{"title":"草并不总是更绿:教师与 GPT 辅助书面纠正反馈的对比","authors":"Shiming Lin, Peter Crosthwaite","doi":"10.1016/j.system.2024.103529","DOIUrl":null,"url":null,"abstract":"<div><div>Written Corrective Feedback (WCF) is a crucial pedagogical practice where teachers annotate student writing to correct errors and improve language skills, albeit one that is time-consuming and laborious for large classes or under time constraints. However, the advent of advanced generative artificial intelligence and large language models, specifically ChatGPT, has introduced new possibilities for automating such educational tasks. GPT models with their transformer architecture and self-attention mechanism can perform complex natural language tasks including assisting teachers in providing WCF. This study compares the WCF produced by teachers and ChatGPT, examining their respective capabilities while identifying differences in their feedback practice. Findings reveal teacher provided WCF typically involves a consistent combination of direct correction and indirect feedback forms addressing both local and global issues, albeit with a degree of inaccuracy. ChatGPT-assisted WCF tends to be in the form of metalinguistic feedback and/or reformulation of the original text. However, GPT also frequently varies in its entire approach to WCF provision even when using the same prompt on the same text, while also providing grammatically accurate yet redundant WCF in certain cases. We discuss the implications of these findings for L2 writing practice.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The grass is not always greener: Teacher vs. GPT-assisted written corrective feedback\",\"authors\":\"Shiming Lin, Peter Crosthwaite\",\"doi\":\"10.1016/j.system.2024.103529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Written Corrective Feedback (WCF) is a crucial pedagogical practice where teachers annotate student writing to correct errors and improve language skills, albeit one that is time-consuming and laborious for large classes or under time constraints. However, the advent of advanced generative artificial intelligence and large language models, specifically ChatGPT, has introduced new possibilities for automating such educational tasks. GPT models with their transformer architecture and self-attention mechanism can perform complex natural language tasks including assisting teachers in providing WCF. This study compares the WCF produced by teachers and ChatGPT, examining their respective capabilities while identifying differences in their feedback practice. Findings reveal teacher provided WCF typically involves a consistent combination of direct correction and indirect feedback forms addressing both local and global issues, albeit with a degree of inaccuracy. ChatGPT-assisted WCF tends to be in the form of metalinguistic feedback and/or reformulation of the original text. However, GPT also frequently varies in its entire approach to WCF provision even when using the same prompt on the same text, while also providing grammatically accurate yet redundant WCF in certain cases. We discuss the implications of these findings for L2 writing practice.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0346251X24003117\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"98","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0346251X24003117","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The grass is not always greener: Teacher vs. GPT-assisted written corrective feedback
Written Corrective Feedback (WCF) is a crucial pedagogical practice where teachers annotate student writing to correct errors and improve language skills, albeit one that is time-consuming and laborious for large classes or under time constraints. However, the advent of advanced generative artificial intelligence and large language models, specifically ChatGPT, has introduced new possibilities for automating such educational tasks. GPT models with their transformer architecture and self-attention mechanism can perform complex natural language tasks including assisting teachers in providing WCF. This study compares the WCF produced by teachers and ChatGPT, examining their respective capabilities while identifying differences in their feedback practice. Findings reveal teacher provided WCF typically involves a consistent combination of direct correction and indirect feedback forms addressing both local and global issues, albeit with a degree of inaccuracy. ChatGPT-assisted WCF tends to be in the form of metalinguistic feedback and/or reformulation of the original text. However, GPT also frequently varies in its entire approach to WCF provision even when using the same prompt on the same text, while also providing grammatically accurate yet redundant WCF in certain cases. We discuss the implications of these findings for L2 writing practice.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.