有理阿斯基-威尔逊伯恩斯坦基和多有理阿斯基-威尔逊花

Plamen Simeonov , Ron Goldman
{"title":"有理阿斯基-威尔逊伯恩斯坦基和多有理阿斯基-威尔逊花","authors":"Plamen Simeonov ,&nbsp;Ron Goldman","doi":"10.1016/j.jaca.2024.100025","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study the properties of new negative degree rational Bernstein bases associated with the Askey–Wilson operator and we use these bases to define new types of rational Bernstein-Bézier curves. We also introduce a new type of blossom, the <em>multirational Askey–Wilson blossom</em>. We prove that four axioms uniquely characterize this blossom and we provide an explicit formula for this multirational blossom involving a right inverse of the Askey–Wilson operator. A formula for the coefficients of a function expanded in a rational Askey–Wilson Bernstein basis in terms of certain values of the Askey–Wilson operator is derived. We also establish a dual functional property that expresses the coefficients of these new types of rational Bernstein–Bézier curves in terms of values of their multirational Askey–Wilson blossom.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"12 ","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Askey–Wilson Bernstein bases and a multirational Askey–Wilson blossom\",\"authors\":\"Plamen Simeonov ,&nbsp;Ron Goldman\",\"doi\":\"10.1016/j.jaca.2024.100025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce and study the properties of new negative degree rational Bernstein bases associated with the Askey–Wilson operator and we use these bases to define new types of rational Bernstein-Bézier curves. We also introduce a new type of blossom, the <em>multirational Askey–Wilson blossom</em>. We prove that four axioms uniquely characterize this blossom and we provide an explicit formula for this multirational blossom involving a right inverse of the Askey–Wilson operator. A formula for the coefficients of a function expanded in a rational Askey–Wilson Bernstein basis in terms of certain values of the Askey–Wilson operator is derived. We also establish a dual functional property that expresses the coefficients of these new types of rational Bernstein–Bézier curves in terms of values of their multirational Askey–Wilson blossom.</div></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"12 \",\"pages\":\"Article 100025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍并研究了与阿斯基-威尔逊算子相关的新负度有理伯恩斯坦基的性质,并利用这些基定义了新型有理伯恩斯坦-贝塞尔曲线。我们还引入了一种新的绽放,即多有理阿斯基-威尔逊绽放。我们证明了四条公理唯一地描述了这种绽放,并提供了涉及阿斯基-威尔逊算子右逆的多向绽放的明确公式。根据阿斯基-威尔逊算子的某些值,我们得出了在有理阿斯基-威尔逊伯恩斯坦基础上展开的函数系数公式。我们还建立了一个对偶函数性质,用它们的多ational Askey-Wilson 开花的值来表示这些新型有理伯恩斯坦-贝塞尔曲线的系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational Askey–Wilson Bernstein bases and a multirational Askey–Wilson blossom
We introduce and study the properties of new negative degree rational Bernstein bases associated with the Askey–Wilson operator and we use these bases to define new types of rational Bernstein-Bézier curves. We also introduce a new type of blossom, the multirational Askey–Wilson blossom. We prove that four axioms uniquely characterize this blossom and we provide an explicit formula for this multirational blossom involving a right inverse of the Askey–Wilson operator. A formula for the coefficients of a function expanded in a rational Askey–Wilson Bernstein basis in terms of certain values of the Askey–Wilson operator is derived. We also establish a dual functional property that expresses the coefficients of these new types of rational Bernstein–Bézier curves in terms of values of their multirational Askey–Wilson blossom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信