具有重尾程度分布的临界随机图上的流行病

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
David Clancy Jr.
{"title":"具有重尾程度分布的临界随机图上的流行病","authors":"David Clancy Jr.","doi":"10.1016/j.spa.2024.104510","DOIUrl":null,"url":null,"abstract":"<div><div>We study the susceptible–infected–recovered (SIR) epidemic on a random graph chosen uniformly over all graphs with certain critical, heavy-tailed degree distributions. We prove process level scaling limits for the number of individuals infected on day <span><math><mi>h</mi></math></span> on the largest connected components of the graph. The scaling limits contain non-negative jumps corresponding to some vertices of large degree. These weak convergence techniques allow us to describe the height profile of the <span><math><mi>α</mi></math></span>-stable continuum random graph (Goldschmidt et al., 2022; Conchon-Kerjan and Goldschmidt, 2023), extending results known in the Brownian case (Miermont and Sen, 2022). We also prove model-independent results that can be used on other critical random graph models.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104510"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epidemics on critical random graphs with heavy-tailed degree distribution\",\"authors\":\"David Clancy Jr.\",\"doi\":\"10.1016/j.spa.2024.104510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the susceptible–infected–recovered (SIR) epidemic on a random graph chosen uniformly over all graphs with certain critical, heavy-tailed degree distributions. We prove process level scaling limits for the number of individuals infected on day <span><math><mi>h</mi></math></span> on the largest connected components of the graph. The scaling limits contain non-negative jumps corresponding to some vertices of large degree. These weak convergence techniques allow us to describe the height profile of the <span><math><mi>α</mi></math></span>-stable continuum random graph (Goldschmidt et al., 2022; Conchon-Kerjan and Goldschmidt, 2023), extending results known in the Brownian case (Miermont and Sen, 2022). We also prove model-independent results that can be used on other critical random graph models.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104510\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002187\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002187","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了随机图上的易感-感染-恢复(SIR)流行病,该随机图是在具有一定临界重尾程度分布的所有图中均匀选择的。我们证明了在图的最大连通部分上第 h 天受感染个体数量的过程级缩放极限。缩放极限包含与一些大度顶点相对应的非负跃迁。这些弱收敛技术允许我们描述 α 稳定连续随机图的高度轮廓(Goldschmidt 等人,2022 年;Conchon-Kerjan 和 Goldschmidt,2023 年),扩展了布朗情况下的已知结果(Miermont 和 Sen,2022 年)。我们还证明了与模型无关的结果,可用于其他临界随机图模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epidemics on critical random graphs with heavy-tailed degree distribution
We study the susceptible–infected–recovered (SIR) epidemic on a random graph chosen uniformly over all graphs with certain critical, heavy-tailed degree distributions. We prove process level scaling limits for the number of individuals infected on day h on the largest connected components of the graph. The scaling limits contain non-negative jumps corresponding to some vertices of large degree. These weak convergence techniques allow us to describe the height profile of the α-stable continuum random graph (Goldschmidt et al., 2022; Conchon-Kerjan and Goldschmidt, 2023), extending results known in the Brownian case (Miermont and Sen, 2022). We also prove model-independent results that can be used on other critical random graph models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信