{"title":"可压缩流动的二阶保守拉格朗日 DG 方案及其在二维圆柱几何中保持球面对称性的应用","authors":"Wenjing Feng , Juan Cheng , Chi-Wang Shu","doi":"10.1016/j.jcp.2024.113530","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct a class of second-order cell-centered Lagrangian discontinuous Galerkin (DG) schemes for the two-dimensional compressible Euler equations on quadrilateral meshes. This Lagrangian DG scheme is based on the physical coordinates rather than the fixed reference coordinates, hence it does not require studying the evolution of the Jacobian matrix for the flow mapping between the different coordinates. The conserved variables are solved directly, and the scheme can preserve the conservation property for mass, momentum and total energy. The strong stability preserving (SSP) Runge-Kutta (RK) method is used for the time discretization. Furthermore, there are two main contributions. Firstly, differently from the previous work, we design a new Lagrangian DG scheme which is truly second-order accurate for all the variables such as density, momentum, total energy, pressure and velocity, while the similar DG schemes in the literature may lose second-order accuracy for certain variables, as shown in numerical experiments. Secondly, as an extension and application, we develop a particular Lagrangian DG scheme in the cylindrical geometry, which is designed to be able to preserve one-dimensional spherical symmetry for all the linear polynomials in two-dimensional cylindrical coordinates when computed on an equal-angle-zoned initial grid. The distinguished feature is that it can maintain both the spherical symmetry and conservation properties, which is very important for many applications such as implosion problems. A series of numerical experiments in the two-dimensional Cartesian and cylindrical coordinates are given to demonstrate the good performance of the Lagrangian DG schemes in terms of accuracy, symmetry and non-oscillation.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113530"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second order conservative Lagrangian DG schemes for compressible flow and their application in preserving spherical symmetry in two-dimensional cylindrical geometry\",\"authors\":\"Wenjing Feng , Juan Cheng , Chi-Wang Shu\",\"doi\":\"10.1016/j.jcp.2024.113530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we construct a class of second-order cell-centered Lagrangian discontinuous Galerkin (DG) schemes for the two-dimensional compressible Euler equations on quadrilateral meshes. This Lagrangian DG scheme is based on the physical coordinates rather than the fixed reference coordinates, hence it does not require studying the evolution of the Jacobian matrix for the flow mapping between the different coordinates. The conserved variables are solved directly, and the scheme can preserve the conservation property for mass, momentum and total energy. The strong stability preserving (SSP) Runge-Kutta (RK) method is used for the time discretization. Furthermore, there are two main contributions. Firstly, differently from the previous work, we design a new Lagrangian DG scheme which is truly second-order accurate for all the variables such as density, momentum, total energy, pressure and velocity, while the similar DG schemes in the literature may lose second-order accuracy for certain variables, as shown in numerical experiments. Secondly, as an extension and application, we develop a particular Lagrangian DG scheme in the cylindrical geometry, which is designed to be able to preserve one-dimensional spherical symmetry for all the linear polynomials in two-dimensional cylindrical coordinates when computed on an equal-angle-zoned initial grid. The distinguished feature is that it can maintain both the spherical symmetry and conservation properties, which is very important for many applications such as implosion problems. A series of numerical experiments in the two-dimensional Cartesian and cylindrical coordinates are given to demonstrate the good performance of the Lagrangian DG schemes in terms of accuracy, symmetry and non-oscillation.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113530\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007782\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007782","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Second order conservative Lagrangian DG schemes for compressible flow and their application in preserving spherical symmetry in two-dimensional cylindrical geometry
In this paper, we construct a class of second-order cell-centered Lagrangian discontinuous Galerkin (DG) schemes for the two-dimensional compressible Euler equations on quadrilateral meshes. This Lagrangian DG scheme is based on the physical coordinates rather than the fixed reference coordinates, hence it does not require studying the evolution of the Jacobian matrix for the flow mapping between the different coordinates. The conserved variables are solved directly, and the scheme can preserve the conservation property for mass, momentum and total energy. The strong stability preserving (SSP) Runge-Kutta (RK) method is used for the time discretization. Furthermore, there are two main contributions. Firstly, differently from the previous work, we design a new Lagrangian DG scheme which is truly second-order accurate for all the variables such as density, momentum, total energy, pressure and velocity, while the similar DG schemes in the literature may lose second-order accuracy for certain variables, as shown in numerical experiments. Secondly, as an extension and application, we develop a particular Lagrangian DG scheme in the cylindrical geometry, which is designed to be able to preserve one-dimensional spherical symmetry for all the linear polynomials in two-dimensional cylindrical coordinates when computed on an equal-angle-zoned initial grid. The distinguished feature is that it can maintain both the spherical symmetry and conservation properties, which is very important for many applications such as implosion problems. A series of numerical experiments in the two-dimensional Cartesian and cylindrical coordinates are given to demonstrate the good performance of the Lagrangian DG schemes in terms of accuracy, symmetry and non-oscillation.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.