二次势中分数衍射和非均质立方非线性条件下的多驼峰孤子

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Xuzhen Gao , Dumitru Mihalache , Milivoj R. Belić , Jincheng Shi , Dewen Cao , Xing Zhu , Liangwei Zeng
{"title":"二次势中分数衍射和非均质立方非线性条件下的多驼峰孤子","authors":"Xuzhen Gao ,&nbsp;Dumitru Mihalache ,&nbsp;Milivoj R. Belić ,&nbsp;Jincheng Shi ,&nbsp;Dewen Cao ,&nbsp;Xing Zhu ,&nbsp;Liangwei Zeng","doi":"10.1016/j.physleta.2024.130018","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate the existence and stability of various multi-hump soliton families within the nonlinear Schrödinger equation with inhomogeneous cubic nonlinearity and fractional diffraction, in the presence of a linear quadratic potential. The profiles, amplitudes, and powers of the three soliton families (the two-, three- and four-hump solitons) are investigated under different parameters, including the Lévy index, propagation constant, and the parameters of the nonuniform cubic nonlinearity. The amplitudes of the two- and three-hump solitons are little sensitive to the variations in the Lévy index, but are highly sensitive to the changes in the propagation constant. Furthermore, we report on two distinct types of four-hump solitons and their propagation under longitudinally modulated nonlinearity. Interestingly, a gradual increase or decrease in the parameter results in the stable regular propagation, while a sudden increase or decrease causes severe distortions and leads to unstable behavior of solitons.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"527 ","pages":"Article 130018"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-hump solitons under fractional diffraction and inhomogeneous cubic nonlinearity in a quadratic potential\",\"authors\":\"Xuzhen Gao ,&nbsp;Dumitru Mihalache ,&nbsp;Milivoj R. Belić ,&nbsp;Jincheng Shi ,&nbsp;Dewen Cao ,&nbsp;Xing Zhu ,&nbsp;Liangwei Zeng\",\"doi\":\"10.1016/j.physleta.2024.130018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We demonstrate the existence and stability of various multi-hump soliton families within the nonlinear Schrödinger equation with inhomogeneous cubic nonlinearity and fractional diffraction, in the presence of a linear quadratic potential. The profiles, amplitudes, and powers of the three soliton families (the two-, three- and four-hump solitons) are investigated under different parameters, including the Lévy index, propagation constant, and the parameters of the nonuniform cubic nonlinearity. The amplitudes of the two- and three-hump solitons are little sensitive to the variations in the Lévy index, but are highly sensitive to the changes in the propagation constant. Furthermore, we report on two distinct types of four-hump solitons and their propagation under longitudinally modulated nonlinearity. Interestingly, a gradual increase or decrease in the parameter results in the stable regular propagation, while a sudden increase or decrease causes severe distortions and leads to unstable behavior of solitons.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"527 \",\"pages\":\"Article 130018\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960124007126\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007126","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在非均质三次非线性和分数衍射的非线性薛定谔方程中,在存在线性二次势的情况下,各种多驼峰孤子族的存在和稳定性。研究了三个孤子族(二驼峰、三驼峰和四驼峰孤子)在不同参数(包括莱维指数、传播常数和非均匀立方非线性参数)下的轮廓、振幅和功率。双驼峰和三驼峰孤子的振幅对列维指数的变化不太敏感,但对传播常量的变化高度敏感。此外,我们还报告了两种不同类型的四驼峰孤子及其在纵向调制非线性条件下的传播情况。有趣的是,参数的逐渐增大或减小会导致稳定的规则传播,而突然增大或减小则会造成严重扭曲,导致孤子行为不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-hump solitons under fractional diffraction and inhomogeneous cubic nonlinearity in a quadratic potential
We demonstrate the existence and stability of various multi-hump soliton families within the nonlinear Schrödinger equation with inhomogeneous cubic nonlinearity and fractional diffraction, in the presence of a linear quadratic potential. The profiles, amplitudes, and powers of the three soliton families (the two-, three- and four-hump solitons) are investigated under different parameters, including the Lévy index, propagation constant, and the parameters of the nonuniform cubic nonlinearity. The amplitudes of the two- and three-hump solitons are little sensitive to the variations in the Lévy index, but are highly sensitive to the changes in the propagation constant. Furthermore, we report on two distinct types of four-hump solitons and their propagation under longitudinally modulated nonlinearity. Interestingly, a gradual increase or decrease in the parameter results in the stable regular propagation, while a sudden increase or decrease causes severe distortions and leads to unstable behavior of solitons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信