{"title":"利用感知细节的神经辐射场实现高保真、高效的会话肖像合成。","authors":"Muyu Wang, Sanyuan Zhao, Xingping Dong, Jianbing Shen","doi":"10.1109/TVCG.2024.3488960","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a novel rendering framework based on neural radiance fields (NeRF) named HH-NeRF that can generate high-resolution audio-driven talking portrait videos with high fidelity and fast rendering. Specifically, our framework includes a detail-aware NeRF module and an efficient conditional super-resolution module. Firstly, a detail-aware NeRF is proposed to efficiently generate a high-fidelity low-resolution talking head, by using the encoded volume density estimation and audio-eye-aware color calculation. This module can capture natural eye blinks and high-frequency details, and maintain a similar rendering time as previous fast methods. Secondly, we present an efficient conditional super-resolution module on the dynamic scene to directly generate the high-resolution portrait with our low-resolution head. Incorporated with the prior information, such as depth map and audio features, our new proposed efficient conditional super resolution module can adopt a lightweight network to efficiently generate realistic and distinct high-resolution videos. Extensive experiments demonstrate that our method can generate more distinct and fidelity talking portraits on high resolution (900 × 900) videos compared to state-of-the-art methods. Our code is available at https://github.com/muyuWang/HHNeRF.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Fidelity and High-Efficiency Talking Portrait Synthesis With Detail-Aware Neural Radiance Fields.\",\"authors\":\"Muyu Wang, Sanyuan Zhao, Xingping Dong, Jianbing Shen\",\"doi\":\"10.1109/TVCG.2024.3488960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a novel rendering framework based on neural radiance fields (NeRF) named HH-NeRF that can generate high-resolution audio-driven talking portrait videos with high fidelity and fast rendering. Specifically, our framework includes a detail-aware NeRF module and an efficient conditional super-resolution module. Firstly, a detail-aware NeRF is proposed to efficiently generate a high-fidelity low-resolution talking head, by using the encoded volume density estimation and audio-eye-aware color calculation. This module can capture natural eye blinks and high-frequency details, and maintain a similar rendering time as previous fast methods. Secondly, we present an efficient conditional super-resolution module on the dynamic scene to directly generate the high-resolution portrait with our low-resolution head. Incorporated with the prior information, such as depth map and audio features, our new proposed efficient conditional super resolution module can adopt a lightweight network to efficiently generate realistic and distinct high-resolution videos. Extensive experiments demonstrate that our method can generate more distinct and fidelity talking portraits on high resolution (900 × 900) videos compared to state-of-the-art methods. Our code is available at https://github.com/muyuWang/HHNeRF.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2024.3488960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3488960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Fidelity and High-Efficiency Talking Portrait Synthesis With Detail-Aware Neural Radiance Fields.
In this paper, we propose a novel rendering framework based on neural radiance fields (NeRF) named HH-NeRF that can generate high-resolution audio-driven talking portrait videos with high fidelity and fast rendering. Specifically, our framework includes a detail-aware NeRF module and an efficient conditional super-resolution module. Firstly, a detail-aware NeRF is proposed to efficiently generate a high-fidelity low-resolution talking head, by using the encoded volume density estimation and audio-eye-aware color calculation. This module can capture natural eye blinks and high-frequency details, and maintain a similar rendering time as previous fast methods. Secondly, we present an efficient conditional super-resolution module on the dynamic scene to directly generate the high-resolution portrait with our low-resolution head. Incorporated with the prior information, such as depth map and audio features, our new proposed efficient conditional super resolution module can adopt a lightweight network to efficiently generate realistic and distinct high-resolution videos. Extensive experiments demonstrate that our method can generate more distinct and fidelity talking portraits on high resolution (900 × 900) videos compared to state-of-the-art methods. Our code is available at https://github.com/muyuWang/HHNeRF.