{"title":"PTPN2 通过改变小胶质细胞表型和抑制炎症,使 STAT3 去磷酸化,从而改善麻醉引起的老年大鼠认知能力下降。","authors":"Xiaochun Zhao , Xueting Wang , Ziyang Xu , Xiaohan Chang , Yue Tian","doi":"10.1016/j.bbadis.2024.167545","DOIUrl":null,"url":null,"abstract":"<div><div>Perioperative neurocognitive disorders (PNDs) are common neurological complications after anesthesia in the elderly. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates signal transducer and activator of transcription protein 3 (STAT3) signaling to control inflammation in certain organs, but its role in PNDs remains unknown. Herein, we constructed a PND model in 18-month-old rats by treating them with sevoflurane. PND rats developed neuroinflammation, along with a significant decrease in PTPN2 expression and a rise in STAT3 phosphorylation in the hippocampus. <em>Ptpn2</em> overexpression alleviated the behavioral disorders of PND rats, ameliorated neuronal injury, inhibited neuroinflammation, inflammasome activation, microglial activation, and microglial phenotype switching. Similar results were observed in sevoflurane-treated HMC3 microglia with PTPN2 overexpression, while PTPN2 silencing showed the opposite results. Additionally, PTPN2 seems to be a target of T-box transcription factor 2 (TBX2). These results contribute to the evidence supporting the idea that PTPN2 is a regulatory factor in PND progression.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 1","pages":"Article 167545"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PTPN2 dephosphorylates STAT3 to ameliorate anesthesia-induced cognitive decline in aged rats by altering the microglial phenotype and inhibiting inflammation\",\"authors\":\"Xiaochun Zhao , Xueting Wang , Ziyang Xu , Xiaohan Chang , Yue Tian\",\"doi\":\"10.1016/j.bbadis.2024.167545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perioperative neurocognitive disorders (PNDs) are common neurological complications after anesthesia in the elderly. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates signal transducer and activator of transcription protein 3 (STAT3) signaling to control inflammation in certain organs, but its role in PNDs remains unknown. Herein, we constructed a PND model in 18-month-old rats by treating them with sevoflurane. PND rats developed neuroinflammation, along with a significant decrease in PTPN2 expression and a rise in STAT3 phosphorylation in the hippocampus. <em>Ptpn2</em> overexpression alleviated the behavioral disorders of PND rats, ameliorated neuronal injury, inhibited neuroinflammation, inflammasome activation, microglial activation, and microglial phenotype switching. Similar results were observed in sevoflurane-treated HMC3 microglia with PTPN2 overexpression, while PTPN2 silencing showed the opposite results. Additionally, PTPN2 seems to be a target of T-box transcription factor 2 (TBX2). These results contribute to the evidence supporting the idea that PTPN2 is a regulatory factor in PND progression.</div></div>\",\"PeriodicalId\":8821,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"volume\":\"1871 1\",\"pages\":\"Article 167545\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925443924005398\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443924005398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PTPN2 dephosphorylates STAT3 to ameliorate anesthesia-induced cognitive decline in aged rats by altering the microglial phenotype and inhibiting inflammation
Perioperative neurocognitive disorders (PNDs) are common neurological complications after anesthesia in the elderly. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates signal transducer and activator of transcription protein 3 (STAT3) signaling to control inflammation in certain organs, but its role in PNDs remains unknown. Herein, we constructed a PND model in 18-month-old rats by treating them with sevoflurane. PND rats developed neuroinflammation, along with a significant decrease in PTPN2 expression and a rise in STAT3 phosphorylation in the hippocampus. Ptpn2 overexpression alleviated the behavioral disorders of PND rats, ameliorated neuronal injury, inhibited neuroinflammation, inflammasome activation, microglial activation, and microglial phenotype switching. Similar results were observed in sevoflurane-treated HMC3 microglia with PTPN2 overexpression, while PTPN2 silencing showed the opposite results. Additionally, PTPN2 seems to be a target of T-box transcription factor 2 (TBX2). These results contribute to the evidence supporting the idea that PTPN2 is a regulatory factor in PND progression.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.