Dipy M Vasa, Shih-Wen Wang, Matthew F Dunn, Erica Long, Suman A Luthra
{"title":"基于分子特性的无定形和超稳定介孔二氧化硅难溶性化合物制剂配方指导树。","authors":"Dipy M Vasa, Shih-Wen Wang, Matthew F Dunn, Erica Long, Suman A Luthra","doi":"10.1016/j.xphs.2024.10.040","DOIUrl":null,"url":null,"abstract":"<p><p>A huge majority of new chemical entities (NCEs) advancing through the drug discovery pipeline often have poor aqueous solubility. This requires formulation scientists to search for solubility enhancement strategies, within the constraints of time and material. To address these challenges, a strategic platform formulation is often required for a rapid compound screening to enable early exploratory PK and toxicology studies. Through this work, we present an option of a material-sparing, high yielding and solubility-enabling amorphous API and HPMCAS-L co-loaded mesoporous silica-based formulation. The usability of this platform formation strategy was assessed for a physico-chemically diverse set of eleven compounds. The formulation approach was successful in stabilizing the model compounds mesoporous silica. Additionally, through the presence of HPMCAS-L, the precipitation risk in supersaturable aqueous environment was significantly reduced. Finally, this manuscript provides fundamental, computational and experimental molecular-properties based formulation guidance tree to a priori gauge the (1) possibility of generating solid-state stable amorphous formulations and (2) sustaining in vitro supersaturation in extreme non-sink dissolution conditions. This unique and conceptual formulation guidance tree is believed to be extremely beneficial to drug discovery formulators to triage NCEs and streamline solubility-enabling formulation efforts.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular-properties based formulation guidance tree for amorphous and supersaturable mesoporous silica preparations of poorly soluble compounds.\",\"authors\":\"Dipy M Vasa, Shih-Wen Wang, Matthew F Dunn, Erica Long, Suman A Luthra\",\"doi\":\"10.1016/j.xphs.2024.10.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A huge majority of new chemical entities (NCEs) advancing through the drug discovery pipeline often have poor aqueous solubility. This requires formulation scientists to search for solubility enhancement strategies, within the constraints of time and material. To address these challenges, a strategic platform formulation is often required for a rapid compound screening to enable early exploratory PK and toxicology studies. Through this work, we present an option of a material-sparing, high yielding and solubility-enabling amorphous API and HPMCAS-L co-loaded mesoporous silica-based formulation. The usability of this platform formation strategy was assessed for a physico-chemically diverse set of eleven compounds. The formulation approach was successful in stabilizing the model compounds mesoporous silica. Additionally, through the presence of HPMCAS-L, the precipitation risk in supersaturable aqueous environment was significantly reduced. Finally, this manuscript provides fundamental, computational and experimental molecular-properties based formulation guidance tree to a priori gauge the (1) possibility of generating solid-state stable amorphous formulations and (2) sustaining in vitro supersaturation in extreme non-sink dissolution conditions. This unique and conceptual formulation guidance tree is believed to be extremely beneficial to drug discovery formulators to triage NCEs and streamline solubility-enabling formulation efforts.</p>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xphs.2024.10.040\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.10.040","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Molecular-properties based formulation guidance tree for amorphous and supersaturable mesoporous silica preparations of poorly soluble compounds.
A huge majority of new chemical entities (NCEs) advancing through the drug discovery pipeline often have poor aqueous solubility. This requires formulation scientists to search for solubility enhancement strategies, within the constraints of time and material. To address these challenges, a strategic platform formulation is often required for a rapid compound screening to enable early exploratory PK and toxicology studies. Through this work, we present an option of a material-sparing, high yielding and solubility-enabling amorphous API and HPMCAS-L co-loaded mesoporous silica-based formulation. The usability of this platform formation strategy was assessed for a physico-chemically diverse set of eleven compounds. The formulation approach was successful in stabilizing the model compounds mesoporous silica. Additionally, through the presence of HPMCAS-L, the precipitation risk in supersaturable aqueous environment was significantly reduced. Finally, this manuscript provides fundamental, computational and experimental molecular-properties based formulation guidance tree to a priori gauge the (1) possibility of generating solid-state stable amorphous formulations and (2) sustaining in vitro supersaturation in extreme non-sink dissolution conditions. This unique and conceptual formulation guidance tree is believed to be extremely beneficial to drug discovery formulators to triage NCEs and streamline solubility-enabling formulation efforts.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.