在沃勒里变性受损的情况下,局部转译体能维持突触功能。

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
EMBO Reports Pub Date : 2025-01-01 Epub Date: 2024-10-31 DOI:10.1038/s44319-024-00301-8
Maria Paglione, Leonardo Restivo, Sarah Zakhia, Arnau Llobet Rosell, Marco Terenzio, Lukas J Neukomm
{"title":"在沃勒里变性受损的情况下,局部转译体能维持突触功能。","authors":"Maria Paglione, Leonardo Restivo, Sarah Zakhia, Arnau Llobet Rosell, Marco Terenzio, Lukas J Neukomm","doi":"10.1038/s44319-024-00301-8","DOIUrl":null,"url":null,"abstract":"<p><p>After injury, severed axons separated from their somas activate programmed axon degeneration, a conserved pathway to initiate their degeneration within a day. Conversely, severed projections deficient in programmed axon degeneration remain morphologically preserved with functional synapses for weeks to months after axotomy. How this synaptic function is sustained remains currently unknown. Here, we show that dNmnat overexpression attenuates programmed axon degeneration in distinct neuronal populations. Severed projections remain morphologically preserved for weeks. When evoked, they elicit a postsynaptic behavior, a readout for preserved synaptic function. We used ribosomal pulldown to isolate the translatome from these projections 1 week after axotomy. Translatome candidates of enriched biological classes identified by transcriptional profiling are validated in a screen using a novel automated system to detect evoked antennal grooming as a proxy for preserved synaptic function. RNAi-mediated knockdown reveals that transcripts of the mTORC1 pathway, a mediator of protein synthesis, and of candidate genes involved in protein ubiquitination and Ca<sup>2+</sup> homeostasis are required for preserved synaptic function. Our translatome dataset also uncovers several uncharacterized Drosophila genes associated with human disease. It may offer insights into novel avenues for therapeutic treatments.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"61-83"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724096/pdf/","citationCount":"0","resultStr":"{\"title\":\"Local translatome sustains synaptic function in impaired Wallerian degeneration.\",\"authors\":\"Maria Paglione, Leonardo Restivo, Sarah Zakhia, Arnau Llobet Rosell, Marco Terenzio, Lukas J Neukomm\",\"doi\":\"10.1038/s44319-024-00301-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>After injury, severed axons separated from their somas activate programmed axon degeneration, a conserved pathway to initiate their degeneration within a day. Conversely, severed projections deficient in programmed axon degeneration remain morphologically preserved with functional synapses for weeks to months after axotomy. How this synaptic function is sustained remains currently unknown. Here, we show that dNmnat overexpression attenuates programmed axon degeneration in distinct neuronal populations. Severed projections remain morphologically preserved for weeks. When evoked, they elicit a postsynaptic behavior, a readout for preserved synaptic function. We used ribosomal pulldown to isolate the translatome from these projections 1 week after axotomy. Translatome candidates of enriched biological classes identified by transcriptional profiling are validated in a screen using a novel automated system to detect evoked antennal grooming as a proxy for preserved synaptic function. RNAi-mediated knockdown reveals that transcripts of the mTORC1 pathway, a mediator of protein synthesis, and of candidate genes involved in protein ubiquitination and Ca<sup>2+</sup> homeostasis are required for preserved synaptic function. Our translatome dataset also uncovers several uncharacterized Drosophila genes associated with human disease. It may offer insights into novel avenues for therapeutic treatments.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"61-83\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-024-00301-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00301-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

损伤后,与其体细胞分离的轴突会激活程序性轴突变性,这是一种在一天内启动轴突变性的保守途径。相反,缺乏程序性轴突变性的切断突起在轴突切断术后的数周至数月内仍能保持形态和功能性突触。这种突触功能是如何维持的目前仍是未知数。在这里,我们发现 dNmnat 的过表达能减轻不同神经元群的程序性轴突变性。被切断的神经投射在形态上可保持数周之久。当诱发时,它们会引起突触后行为,这是突触功能保留的读数。我们在轴突切断术一周后使用核糖体下拉法从这些突起中分离出转译体。通过转录谱分析确定的富集生物类别的转译组候选者在使用新型自动系统的筛选中得到验证,以检测诱发的触角梳理作为突触功能保留的替代物。通过 RNAi- 介导的基因敲除发现,蛋白合成介导因子 mTORC1 通路以及参与蛋白泛素化和 Ca2+ 平衡的候选基因的转录本是保留突触功能所必需的。我们的转译组数据集还发现了几个与人类疾病相关的未定性果蝇基因。它可能为新的治疗途径提供洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local translatome sustains synaptic function in impaired Wallerian degeneration.

After injury, severed axons separated from their somas activate programmed axon degeneration, a conserved pathway to initiate their degeneration within a day. Conversely, severed projections deficient in programmed axon degeneration remain morphologically preserved with functional synapses for weeks to months after axotomy. How this synaptic function is sustained remains currently unknown. Here, we show that dNmnat overexpression attenuates programmed axon degeneration in distinct neuronal populations. Severed projections remain morphologically preserved for weeks. When evoked, they elicit a postsynaptic behavior, a readout for preserved synaptic function. We used ribosomal pulldown to isolate the translatome from these projections 1 week after axotomy. Translatome candidates of enriched biological classes identified by transcriptional profiling are validated in a screen using a novel automated system to detect evoked antennal grooming as a proxy for preserved synaptic function. RNAi-mediated knockdown reveals that transcripts of the mTORC1 pathway, a mediator of protein synthesis, and of candidate genes involved in protein ubiquitination and Ca2+ homeostasis are required for preserved synaptic function. Our translatome dataset also uncovers several uncharacterized Drosophila genes associated with human disease. It may offer insights into novel avenues for therapeutic treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信