分数驱动的指数随机图:一类新的时态网络时变参数模型。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D Di Gangi, G Bormetti, F Lillo
{"title":"分数驱动的指数随机图:一类新的时态网络时变参数模型。","authors":"D Di Gangi, G Bormetti, F Lillo","doi":"10.1063/5.0222079","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the increasing abundance of data describing real-world networks that exhibit dynamical features, we propose an extension of the exponential random graph models (ERGMs) that accommodates the time variation of its parameters. Inspired by the fast-growing literature on dynamic conditional score models, each parameter evolves according to an updating rule driven by the score of the ERGM distribution. We demonstrate the flexibility of score-driven ERGMs (SD-ERGMs) as data-generating processes and filters and show the advantages of the dynamic version over the static one. We discuss two applications to temporal networks from financial and political systems. First, we consider the prediction of future links in the Italian interbank credit network. Second, we show that the SD-ERGM allows discriminating between static or time-varying parameters when used to model the U.S. Congress co-voting network dynamics.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Score-driven exponential random graphs: A new class of time-varying parameter models for temporal networks.\",\"authors\":\"D Di Gangi, G Bormetti, F Lillo\",\"doi\":\"10.1063/5.0222079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by the increasing abundance of data describing real-world networks that exhibit dynamical features, we propose an extension of the exponential random graph models (ERGMs) that accommodates the time variation of its parameters. Inspired by the fast-growing literature on dynamic conditional score models, each parameter evolves according to an updating rule driven by the score of the ERGM distribution. We demonstrate the flexibility of score-driven ERGMs (SD-ERGMs) as data-generating processes and filters and show the advantages of the dynamic version over the static one. We discuss two applications to temporal networks from financial and political systems. First, we consider the prediction of future links in the Italian interbank credit network. Second, we show that the SD-ERGM allows discriminating between static or time-varying parameters when used to model the U.S. Congress co-voting network dynamics.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0222079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

描述真实世界网络的数据日益丰富,这些数据显示出动态特征,受此激励,我们提出了指数随机图模型(ERGMs)的扩展,以适应其参数的时间变化。受快速增长的动态条件得分模型文献的启发,每个参数都会根据 ERGM 分布得分驱动的更新规则发生变化。我们展示了分数驱动 ERGM(SD-ERGM)作为数据生成过程和过滤器的灵活性,并显示了动态版本相对于静态版本的优势。我们讨论了金融和政治系统时间网络的两个应用。首先,我们考虑预测意大利银行间信贷网络的未来联系。其次,我们展示了 SD-ERGM 在用于模拟美国国会共同投票网络动态时,可以区分静态参数和时变参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Score-driven exponential random graphs: A new class of time-varying parameter models for temporal networks.

Motivated by the increasing abundance of data describing real-world networks that exhibit dynamical features, we propose an extension of the exponential random graph models (ERGMs) that accommodates the time variation of its parameters. Inspired by the fast-growing literature on dynamic conditional score models, each parameter evolves according to an updating rule driven by the score of the ERGM distribution. We demonstrate the flexibility of score-driven ERGMs (SD-ERGMs) as data-generating processes and filters and show the advantages of the dynamic version over the static one. We discuss two applications to temporal networks from financial and political systems. First, we consider the prediction of future links in the Italian interbank credit network. Second, we show that the SD-ERGM allows discriminating between static or time-varying parameters when used to model the U.S. Congress co-voting network dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信