由 Ornstein-Uhlenbeck 噪声驱动的系统中的多模态性。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-11-01 DOI:10.1063/5.0228666
Bartłomiej Dybiec
{"title":"由 Ornstein-Uhlenbeck 噪声驱动的系统中的多模态性。","authors":"Bartłomiej Dybiec","doi":"10.1063/5.0228666","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of noise in nonlinear dynamical systems can significantly change their properties. Here, we study the properties of a noise perturbed motion in a single-well potential of |x|n (n>0) type. We explore under what conditions the action of the Ornstein-Uhlenbeck noise induces bimodality of stationary states in static, single-well, power-law potentials. In particular, we inspect the transition from unimodality (n⩽2) to bimodality (n>2). Results of numerical simulations are compared with estimates obtained from the unified colored-noise approximation. Furthermore, we explore the role of a harmonic addition to the general single-well power-law potentials showing its constructive or destructive role.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodality in systems driven by Ornstein-Uhlenbeck noise.\",\"authors\":\"Bartłomiej Dybiec\",\"doi\":\"10.1063/5.0228666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The presence of noise in nonlinear dynamical systems can significantly change their properties. Here, we study the properties of a noise perturbed motion in a single-well potential of |x|n (n>0) type. We explore under what conditions the action of the Ornstein-Uhlenbeck noise induces bimodality of stationary states in static, single-well, power-law potentials. In particular, we inspect the transition from unimodality (n⩽2) to bimodality (n>2). Results of numerical simulations are compared with estimates obtained from the unified colored-noise approximation. Furthermore, we explore the role of a harmonic addition to the general single-well power-law potentials showing its constructive or destructive role.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"34 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0228666\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0228666","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

非线性动力学系统中噪声的存在会显著改变其特性。在此,我们研究了 |x|n (n>0) 型单阱势中受噪声扰动的运动特性。我们探讨了在什么条件下,Ornstein-Uhlenbeck 噪声的作用会导致静态、单孔、幂律势中静止状态的双峰性。特别是,我们考察了从单峰性(n⩽2)到双峰性(n>2)的过渡。我们将数值模拟的结果与统一色噪近似的估计值进行了比较。此外,我们还探讨了一般单阱幂律势的谐波附加作用,显示了其建设性或破坏性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodality in systems driven by Ornstein-Uhlenbeck noise.

The presence of noise in nonlinear dynamical systems can significantly change their properties. Here, we study the properties of a noise perturbed motion in a single-well potential of |x|n (n>0) type. We explore under what conditions the action of the Ornstein-Uhlenbeck noise induces bimodality of stationary states in static, single-well, power-law potentials. In particular, we inspect the transition from unimodality (n⩽2) to bimodality (n>2). Results of numerical simulations are compared with estimates obtained from the unified colored-noise approximation. Furthermore, we explore the role of a harmonic addition to the general single-well power-law potentials showing its constructive or destructive role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信