{"title":"三角形凹坑对二维 MoTe2 力学行为的影响:分子动力学研究。","authors":"Md Jobayer Aziz, Md. Akibul Islam, Md. Rezwanul Karim, Arafat Ahmed Bhuiyan","doi":"10.1007/s00894-024-06180-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Among two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) stand out for their remarkable electronic, optical, and chemical properties. Their atomic thinness also imparts flexibility, making them ideal for flexible and wearable devices. However, our understanding of the mechanical characteristics of molybdenum ditelluride (MoTe<sub>2</sub>), particularly with defects such as pits, remains limited. Such defects, common in grown TMDs, degrade the mechanical properties and affect electronic and magnetic behaviors. This study uses molecular dynamics (MD) simulations of uniaxial and biaxial tensile loading performed on monolayer molybdenum ditelluride sheets of 2H phase containing triangular pits of varying vertex angles to investigate their fracture properties and visualize their crack propagation. From the stress–strain relationship, Young’s modulus, fracture strain, ultimate tensile strength, and toughness for comparative analysis were calculated.</p><h3>Method</h3><p>Tensile loading simulations were performed in molecular dynamics (MD) software LAMMPS, using the Stillinger–Weber (SW) interatomic potential, under strain rate 10<sup>8</sup> s<sup>−1</sup> at room temperature (300 K). From the stress–strain relationship obtained, we calculated Young’s modulus, fracture strain, ultimate tensile strength, and toughness. Results showed that variations in pit edge length, angle, and perimeter significantly affected these properties in monolayer MoTe<sub>2</sub>. Regulated alteration of pit angle under constant simulation conditions resulted in improved uniaxial mechanical properties, while altering pit perimeters improved biaxial mechanical properties. Stress distribution was visualized using OVITO software. MoTe<sub>2</sub> with pit defects was found to be more brittle than its pristine counterpart. This study provides foundational knowledge for advanced design strategies involving strain engineering in MoTe<sub>2</sub> and similar TMDs.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of triangular pits on the mechanical behavior of 2D MoTe2: a molecular dynamics study\",\"authors\":\"Md Jobayer Aziz, Md. Akibul Islam, Md. Rezwanul Karim, Arafat Ahmed Bhuiyan\",\"doi\":\"10.1007/s00894-024-06180-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>Among two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) stand out for their remarkable electronic, optical, and chemical properties. Their atomic thinness also imparts flexibility, making them ideal for flexible and wearable devices. However, our understanding of the mechanical characteristics of molybdenum ditelluride (MoTe<sub>2</sub>), particularly with defects such as pits, remains limited. Such defects, common in grown TMDs, degrade the mechanical properties and affect electronic and magnetic behaviors. This study uses molecular dynamics (MD) simulations of uniaxial and biaxial tensile loading performed on monolayer molybdenum ditelluride sheets of 2H phase containing triangular pits of varying vertex angles to investigate their fracture properties and visualize their crack propagation. From the stress–strain relationship, Young’s modulus, fracture strain, ultimate tensile strength, and toughness for comparative analysis were calculated.</p><h3>Method</h3><p>Tensile loading simulations were performed in molecular dynamics (MD) software LAMMPS, using the Stillinger–Weber (SW) interatomic potential, under strain rate 10<sup>8</sup> s<sup>−1</sup> at room temperature (300 K). From the stress–strain relationship obtained, we calculated Young’s modulus, fracture strain, ultimate tensile strength, and toughness. Results showed that variations in pit edge length, angle, and perimeter significantly affected these properties in monolayer MoTe<sub>2</sub>. Regulated alteration of pit angle under constant simulation conditions resulted in improved uniaxial mechanical properties, while altering pit perimeters improved biaxial mechanical properties. Stress distribution was visualized using OVITO software. MoTe<sub>2</sub> with pit defects was found to be more brittle than its pristine counterpart. This study provides foundational knowledge for advanced design strategies involving strain engineering in MoTe<sub>2</sub> and similar TMDs.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06180-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06180-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of triangular pits on the mechanical behavior of 2D MoTe2: a molecular dynamics study
Context
Among two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) stand out for their remarkable electronic, optical, and chemical properties. Their atomic thinness also imparts flexibility, making them ideal for flexible and wearable devices. However, our understanding of the mechanical characteristics of molybdenum ditelluride (MoTe2), particularly with defects such as pits, remains limited. Such defects, common in grown TMDs, degrade the mechanical properties and affect electronic and magnetic behaviors. This study uses molecular dynamics (MD) simulations of uniaxial and biaxial tensile loading performed on monolayer molybdenum ditelluride sheets of 2H phase containing triangular pits of varying vertex angles to investigate their fracture properties and visualize their crack propagation. From the stress–strain relationship, Young’s modulus, fracture strain, ultimate tensile strength, and toughness for comparative analysis were calculated.
Method
Tensile loading simulations were performed in molecular dynamics (MD) software LAMMPS, using the Stillinger–Weber (SW) interatomic potential, under strain rate 108 s−1 at room temperature (300 K). From the stress–strain relationship obtained, we calculated Young’s modulus, fracture strain, ultimate tensile strength, and toughness. Results showed that variations in pit edge length, angle, and perimeter significantly affected these properties in monolayer MoTe2. Regulated alteration of pit angle under constant simulation conditions resulted in improved uniaxial mechanical properties, while altering pit perimeters improved biaxial mechanical properties. Stress distribution was visualized using OVITO software. MoTe2 with pit defects was found to be more brittle than its pristine counterpart. This study provides foundational knowledge for advanced design strategies involving strain engineering in MoTe2 and similar TMDs.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.