José Aguilar-Rodríguez , Christopher M. Jakobson , Daniel F. Jarosz
{"title":"Hsp90分子伴侣是基因型-表型-适配性图谱的全球修饰因子:进化的视角","authors":"José Aguilar-Rodríguez , Christopher M. Jakobson , Daniel F. Jarosz","doi":"10.1016/j.jmb.2024.168846","DOIUrl":null,"url":null,"abstract":"<div><div>Global modifier genes influence the mapping of genotypes onto phenotypes and fitness through their epistatic interactions with genetic variants on a massive scale. The first such factor to be identified, Hsp90, is a highly conserved molecular chaperone that plays a central role in protein homeostasis. Hsp90 is a “hub of hubs” that chaperones proteins engaged in many key cellular and developmental regulatory networks. These clients, which are enriched in kinases, transcription factors, and E3 ubiquitin ligases, drive diverse cellular functions and are themselves highly connected. By contrast to many other hub proteins, the abundance and activity of Hsp90 changes substantially in response to shifting environmental conditions. As a result, Hsp90 modifies the functional impact of many genetic variants simultaneously in a manner that depends on environmental stress. Studies in diverse organisms suggest that this coupling between Hsp90 function and challenging environments exerts a substantial impact on what parts of the genome are visible to natural selection, expanding adaptive opportunities when most needed. In this Perspective, we explore the multifaceted role of Hsp90 as global modifier of the genotype-phenotype-fitness map as well as its implications for evolution in nature and the clinic.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 23","pages":"Article 168846"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hsp90 Molecular Chaperone as a Global Modifier of the Genotype-Phenotype-Fitness Map: An Evolutionary Perspective\",\"authors\":\"José Aguilar-Rodríguez , Christopher M. Jakobson , Daniel F. Jarosz\",\"doi\":\"10.1016/j.jmb.2024.168846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global modifier genes influence the mapping of genotypes onto phenotypes and fitness through their epistatic interactions with genetic variants on a massive scale. The first such factor to be identified, Hsp90, is a highly conserved molecular chaperone that plays a central role in protein homeostasis. Hsp90 is a “hub of hubs” that chaperones proteins engaged in many key cellular and developmental regulatory networks. These clients, which are enriched in kinases, transcription factors, and E3 ubiquitin ligases, drive diverse cellular functions and are themselves highly connected. By contrast to many other hub proteins, the abundance and activity of Hsp90 changes substantially in response to shifting environmental conditions. As a result, Hsp90 modifies the functional impact of many genetic variants simultaneously in a manner that depends on environmental stress. Studies in diverse organisms suggest that this coupling between Hsp90 function and challenging environments exerts a substantial impact on what parts of the genome are visible to natural selection, expanding adaptive opportunities when most needed. In this Perspective, we explore the multifaceted role of Hsp90 as global modifier of the genotype-phenotype-fitness map as well as its implications for evolution in nature and the clinic.</div></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"436 23\",\"pages\":\"Article 168846\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624004753\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624004753","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Hsp90 Molecular Chaperone as a Global Modifier of the Genotype-Phenotype-Fitness Map: An Evolutionary Perspective
Global modifier genes influence the mapping of genotypes onto phenotypes and fitness through their epistatic interactions with genetic variants on a massive scale. The first such factor to be identified, Hsp90, is a highly conserved molecular chaperone that plays a central role in protein homeostasis. Hsp90 is a “hub of hubs” that chaperones proteins engaged in many key cellular and developmental regulatory networks. These clients, which are enriched in kinases, transcription factors, and E3 ubiquitin ligases, drive diverse cellular functions and are themselves highly connected. By contrast to many other hub proteins, the abundance and activity of Hsp90 changes substantially in response to shifting environmental conditions. As a result, Hsp90 modifies the functional impact of many genetic variants simultaneously in a manner that depends on environmental stress. Studies in diverse organisms suggest that this coupling between Hsp90 function and challenging environments exerts a substantial impact on what parts of the genome are visible to natural selection, expanding adaptive opportunities when most needed. In this Perspective, we explore the multifaceted role of Hsp90 as global modifier of the genotype-phenotype-fitness map as well as its implications for evolution in nature and the clinic.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.