生物质 BHMF 加氢生成可再生聚合物 BHMTHF 的 Ru 单原子催化剂的反应机理和速率。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liyuan Huai, Jian Zhang, William A Goddard
{"title":"生物质 BHMF 加氢生成可再生聚合物 BHMTHF 的 Ru 单原子催化剂的反应机理和速率。","authors":"Liyuan Huai, Jian Zhang, William A Goddard","doi":"10.1021/jacs.4c11551","DOIUrl":null,"url":null,"abstract":"<p><p>Realizing high selectivity for producing biodegradable 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) for renewable polymers from 5-hydroxymethylfurfural (HMF) biomass through ring hydrogenation on single-atom catalysts poses a considerable challenge due to the complexity of HMF functional groups and the difficulty of H<sub>2</sub> dissociation. We developed a detailed reaction mechanism based on <i>ab initio</i> molecular dynamics (AIMD) and quantum mechanics (QM) to find that Ru single-atom catalysts can simultaneously dissociate H<sub>2</sub> and perform the ring hydrogenation of biomass-derived 2,5-bis(hydroxymethyl)furan (BHMF) to produce biodegradable BHMTHF, with a free energy barrier of 0.82 eV. The unique property of Ru single-atom sites enables H<sub>2</sub> to dissociate easily on a single active site of Ru to participate directly in the reaction without diffusion. Furthermore, our predicted reaction rate from microkinetic analysis indicates that ring hydrogenation and side-chain hydrogenolysis are much faster than ring-opening hydrogenation over the range of 300-550 K. The product BHMTHF dominates with a selectivity of 98.9% at 300 and 78.4% at 550 K (the second product is 5-methylfurfural (5-MFA)). This study underscores the unique effectiveness of Ru single atoms in ring hydrogenation reactions using H<sub>2</sub> as the hydrogen source, offering insights for the design of single-atom catalysts for other biomass reactions.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Reaction Mechanism and Rates at Ru Single-Atom Catalysts for Hydrogenation of Biomass BHMF to Produce BHMTHF for Renewable Polymers.\",\"authors\":\"Liyuan Huai, Jian Zhang, William A Goddard\",\"doi\":\"10.1021/jacs.4c11551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Realizing high selectivity for producing biodegradable 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) for renewable polymers from 5-hydroxymethylfurfural (HMF) biomass through ring hydrogenation on single-atom catalysts poses a considerable challenge due to the complexity of HMF functional groups and the difficulty of H<sub>2</sub> dissociation. We developed a detailed reaction mechanism based on <i>ab initio</i> molecular dynamics (AIMD) and quantum mechanics (QM) to find that Ru single-atom catalysts can simultaneously dissociate H<sub>2</sub> and perform the ring hydrogenation of biomass-derived 2,5-bis(hydroxymethyl)furan (BHMF) to produce biodegradable BHMTHF, with a free energy barrier of 0.82 eV. The unique property of Ru single-atom sites enables H<sub>2</sub> to dissociate easily on a single active site of Ru to participate directly in the reaction without diffusion. Furthermore, our predicted reaction rate from microkinetic analysis indicates that ring hydrogenation and side-chain hydrogenolysis are much faster than ring-opening hydrogenation over the range of 300-550 K. The product BHMTHF dominates with a selectivity of 98.9% at 300 and 78.4% at 550 K (the second product is 5-methylfurfural (5-MFA)). This study underscores the unique effectiveness of Ru single atoms in ring hydrogenation reactions using H<sub>2</sub> as the hydrogen source, offering insights for the design of single-atom catalysts for other biomass reactions.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c11551\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11551","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于 HMF 官能团的复杂性和 H2 解离的困难性,在单原子催化剂上通过环氢化实现从 5-羟甲基糠醛(HMF)生物质生产可生物降解的 2,5-双(羟甲基)四氢呋喃(BHMTHF)的高选择性是一个相当大的挑战。我们基于原子分子动力学(ab initio molecular dynamics,AIMD)和量子力学(quantum mechanics,QM)建立了详细的反应机理,发现 Ru 单原子催化剂可以同时解离 H2 并对生物质衍生的 2,5-双(羟甲基)呋喃(2,5-bis(hydroxymethyl)furan,BHMF)进行环氢化反应,生成可生物降解的 BHMTHF,自由能垒为 0.82 eV。由于 Ru 单原子位点的独特性质,H2 很容易在 Ru 的单个活性位点上解离,从而直接参与反应而无需扩散。此外,我们通过微动力学分析预测的反应速率表明,在 300-550 K 的范围内,环氢化和侧链氢解要比开环氢化快得多。这项研究强调了 Ru 单原子在以 H2 为氢源的环氢化反应中的独特功效,为设计用于其他生物质反应的单原子催化剂提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Reaction Mechanism and Rates at Ru Single-Atom Catalysts for Hydrogenation of Biomass BHMF to Produce BHMTHF for Renewable Polymers.

The Reaction Mechanism and Rates at Ru Single-Atom Catalysts for Hydrogenation of Biomass BHMF to Produce BHMTHF for Renewable Polymers.

Realizing high selectivity for producing biodegradable 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) for renewable polymers from 5-hydroxymethylfurfural (HMF) biomass through ring hydrogenation on single-atom catalysts poses a considerable challenge due to the complexity of HMF functional groups and the difficulty of H2 dissociation. We developed a detailed reaction mechanism based on ab initio molecular dynamics (AIMD) and quantum mechanics (QM) to find that Ru single-atom catalysts can simultaneously dissociate H2 and perform the ring hydrogenation of biomass-derived 2,5-bis(hydroxymethyl)furan (BHMF) to produce biodegradable BHMTHF, with a free energy barrier of 0.82 eV. The unique property of Ru single-atom sites enables H2 to dissociate easily on a single active site of Ru to participate directly in the reaction without diffusion. Furthermore, our predicted reaction rate from microkinetic analysis indicates that ring hydrogenation and side-chain hydrogenolysis are much faster than ring-opening hydrogenation over the range of 300-550 K. The product BHMTHF dominates with a selectivity of 98.9% at 300 and 78.4% at 550 K (the second product is 5-methylfurfural (5-MFA)). This study underscores the unique effectiveness of Ru single atoms in ring hydrogenation reactions using H2 as the hydrogen source, offering insights for the design of single-atom catalysts for other biomass reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信