独立于网络设备的因果不可分性认证

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-10-30 DOI:10.22331/q-2024-10-30-1514
Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard
{"title":"独立于网络设备的因果不可分性认证","authors":"Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard","doi":"10.22331/q-2024-10-30-1514","DOIUrl":null,"url":null,"abstract":"Causal nonseparability is the property underlying quantum processes incompatible with a definite causal order. So far it has remained a central open question as to whether any process with a clear physical realisation can violate a causal inequality, so that its causal nonseparability can be certified in a device-independent way, as originally conceived. Here we present a method solely based on the observed correlations, which certifies the causal nonseparability of all the processes that can induce a causally nonseparable distributed measurement in a scenario with trusted quantum input states, as defined in [Dourdent et al., Phys. Rev. Lett. 129, 090402 (2022)]. This notably includes the celebrated quantum switch. This device-independent certification is achieved by introducing a network of untrusted operations, allowing one to self-test the quantum inputs on which the effective distributed measurement induced by the process is performed.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"38 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network-Device-Independent Certification of Causal Nonseparability\",\"authors\":\"Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard\",\"doi\":\"10.22331/q-2024-10-30-1514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causal nonseparability is the property underlying quantum processes incompatible with a definite causal order. So far it has remained a central open question as to whether any process with a clear physical realisation can violate a causal inequality, so that its causal nonseparability can be certified in a device-independent way, as originally conceived. Here we present a method solely based on the observed correlations, which certifies the causal nonseparability of all the processes that can induce a causally nonseparable distributed measurement in a scenario with trusted quantum input states, as defined in [Dourdent et al., Phys. Rev. Lett. 129, 090402 (2022)]. This notably includes the celebrated quantum switch. This device-independent certification is achieved by introducing a network of untrusted operations, allowing one to self-test the quantum inputs on which the effective distributed measurement induced by the process is performed.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-10-30-1514\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-30-1514","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

因果不可分性是量子过程与确定的因果顺序不相容的基本属性。迄今为止,一个核心的悬而未决的问题是,是否任何具有明确物理现实的过程都能违反因果不等式,从而使其因果不可分性能像最初设想的那样以一种与设备无关的方式得到证明。在这里,我们提出了一种完全基于观测到的相关性的方法,它可以证明所有过程的因果不可分割性,这些过程可以在具有可信量子输入状态的情况下引起因果不可分割的分布式测量,正如[Dourdent 等人,Phys. Rev. Lett.这主要包括著名的量子开关。这种独立于设备的认证是通过引入一个非信任操作网络来实现的,它允许人们对量子输入进行自我测试,在量子输入上执行由过程诱导的有效分布式测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network-Device-Independent Certification of Causal Nonseparability
Causal nonseparability is the property underlying quantum processes incompatible with a definite causal order. So far it has remained a central open question as to whether any process with a clear physical realisation can violate a causal inequality, so that its causal nonseparability can be certified in a device-independent way, as originally conceived. Here we present a method solely based on the observed correlations, which certifies the causal nonseparability of all the processes that can induce a causally nonseparable distributed measurement in a scenario with trusted quantum input states, as defined in [Dourdent et al., Phys. Rev. Lett. 129, 090402 (2022)]. This notably includes the celebrated quantum switch. This device-independent certification is achieved by introducing a network of untrusted operations, allowing one to self-test the quantum inputs on which the effective distributed measurement induced by the process is performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信