智能纳米材料图像表征--全面评述推动纳米科学发展和未来的人工智能技术

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Umapathi Krishnamoorthy, Sukanya Balasubramani
{"title":"智能纳米材料图像表征--全面评述推动纳米科学发展和未来的人工智能技术","authors":"Umapathi Krishnamoorthy, Sukanya Balasubramani","doi":"10.1002/adts.202400479","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) is pivotal in advancing science, including nanomaterial studies. This review explores AI‐based image processing in nanoscience, focusing on algorithms to enhance characterization results from instruments like scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, atomic force microscopy etc. It addresses the significance of AI in nanoscience, challenges in advancing AI‐based image processing for nano material characterization, and AI's role in structural analysis, property prediction, deriving structure‐property relations, dataset augmentation, and improving model robustness. Key AI techniques such as Graph Neural Networks, adversarial training, transfer learning, generative models, attention mechanisms, and federated learning are highlighted for their contributions to nano science studies. The review concludes by outlining persisting challenges and thrust areas for future research, aiming to propel nanoscience with AI. This comprehensive analysis underscores the importance of AI‐powered image processing in nanomaterial characterization, offering valuable insights for researchers.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"60 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Nanomaterial Image Characterizations – A Comprehensive Review on AI Techniques that Power the Present and Drive the Future of Nanoscience\",\"authors\":\"Umapathi Krishnamoorthy, Sukanya Balasubramani\",\"doi\":\"10.1002/adts.202400479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) is pivotal in advancing science, including nanomaterial studies. This review explores AI‐based image processing in nanoscience, focusing on algorithms to enhance characterization results from instruments like scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, atomic force microscopy etc. It addresses the significance of AI in nanoscience, challenges in advancing AI‐based image processing for nano material characterization, and AI's role in structural analysis, property prediction, deriving structure‐property relations, dataset augmentation, and improving model robustness. Key AI techniques such as Graph Neural Networks, adversarial training, transfer learning, generative models, attention mechanisms, and federated learning are highlighted for their contributions to nano science studies. The review concludes by outlining persisting challenges and thrust areas for future research, aiming to propel nanoscience with AI. This comprehensive analysis underscores the importance of AI‐powered image processing in nanomaterial characterization, offering valuable insights for researchers.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400479\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400479","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)在推动包括纳米材料研究在内的科学发展方面举足轻重。这篇综述探讨了纳米科学中基于人工智能的图像处理,重点是用于增强扫描电子显微镜、透射电子显微镜、X 射线衍射、原子力显微镜等仪器表征结果的算法。文章论述了人工智能在纳米科学中的重要意义、推进基于人工智能的纳米材料表征图像处理所面临的挑战,以及人工智能在结构分析、性质预测、推导结构-性质关系、数据集扩充和提高模型稳健性方面的作用。重点介绍了图神经网络、对抗训练、迁移学习、生成模型、注意机制和联合学习等关键人工智能技术对纳米科学研究的贡献。综述最后概述了持续存在的挑战和未来研究的重点领域,旨在利用人工智能推动纳米科学的发展。这一全面分析强调了人工智能图像处理在纳米材料表征中的重要性,为研究人员提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Nanomaterial Image Characterizations – A Comprehensive Review on AI Techniques that Power the Present and Drive the Future of Nanoscience
Artificial Intelligence (AI) is pivotal in advancing science, including nanomaterial studies. This review explores AI‐based image processing in nanoscience, focusing on algorithms to enhance characterization results from instruments like scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, atomic force microscopy etc. It addresses the significance of AI in nanoscience, challenges in advancing AI‐based image processing for nano material characterization, and AI's role in structural analysis, property prediction, deriving structure‐property relations, dataset augmentation, and improving model robustness. Key AI techniques such as Graph Neural Networks, adversarial training, transfer learning, generative models, attention mechanisms, and federated learning are highlighted for their contributions to nano science studies. The review concludes by outlining persisting challenges and thrust areas for future research, aiming to propel nanoscience with AI. This comprehensive analysis underscores the importance of AI‐powered image processing in nanomaterial characterization, offering valuable insights for researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信