多传感器数据融合框架和利用参考数据集验证算法

Louis-Ferdinand Lafon , Alain Vissière , Charyar Mehdi-Souzani , Hichem Nouira , Nabil Anwer
{"title":"多传感器数据融合框架和利用参考数据集验证算法","authors":"Louis-Ferdinand Lafon ,&nbsp;Alain Vissière ,&nbsp;Charyar Mehdi-Souzani ,&nbsp;Hichem Nouira ,&nbsp;Nabil Anwer","doi":"10.1016/j.procir.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial data fusion algorithms are widely applied in dimensional metrology for quality assessment or surface reconstruction. Multi-sensor point cloud fusion combines the advantages of multiple sensors by merging their measurements into a single coordinate system and reducing the prediction uncertainty and systematic errors. Algorithms designed for these tasks employ many methods that require thorough evaluations through a common framework. To address this need, this paper proposes a framework for simultaneous registration and approximation, and introduces a reference data generator for unbiased evaluations of data fusion algorithms with heterogeneous and anisotropic noise assumptions for applications involving multiple sensors. The bias for the generated reference data is evaluated close to floating point accuracy, which validates the generation method, and uncertainty evaluation on ICP variants reveals that reference data is more suitable to evaluate point cloud fusion algorithms. The proposed framework and data generator allows developing and validating more accurate data fusion algorithms.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-sensor data fusion framework and validation of algorithms with reference datasets\",\"authors\":\"Louis-Ferdinand Lafon ,&nbsp;Alain Vissière ,&nbsp;Charyar Mehdi-Souzani ,&nbsp;Hichem Nouira ,&nbsp;Nabil Anwer\",\"doi\":\"10.1016/j.procir.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spatial data fusion algorithms are widely applied in dimensional metrology for quality assessment or surface reconstruction. Multi-sensor point cloud fusion combines the advantages of multiple sensors by merging their measurements into a single coordinate system and reducing the prediction uncertainty and systematic errors. Algorithms designed for these tasks employ many methods that require thorough evaluations through a common framework. To address this need, this paper proposes a framework for simultaneous registration and approximation, and introduces a reference data generator for unbiased evaluations of data fusion algorithms with heterogeneous and anisotropic noise assumptions for applications involving multiple sensors. The bias for the generated reference data is evaluated close to floating point accuracy, which validates the generation method, and uncertainty evaluation on ICP variants reveals that reference data is more suitable to evaluate point cloud fusion algorithms. The proposed framework and data generator allows developing and validating more accurate data fusion algorithms.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827124011600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124011600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间数据融合算法被广泛应用于质量评估或表面重建的尺寸计量中。多传感器点云融合结合了多个传感器的优势,将它们的测量结果合并到一个坐标系中,减少了预测的不确定性和系统误差。针对这些任务设计的算法采用了多种方法,需要通过一个通用框架进行全面评估。为了满足这一需求,本文提出了一个同步注册和近似的框架,并引入了一个参考数据生成器,用于对涉及多个传感器应用的具有异构和各向异性噪声假设的数据融合算法进行无偏评估。对生成的参考数据进行的偏差评估接近浮点精度,这验证了生成方法,而对 ICP 变体进行的不确定性评估显示,参考数据更适合评估点云融合算法。建议的框架和数据生成器允许开发和验证更精确的数据融合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-sensor data fusion framework and validation of algorithms with reference datasets
Spatial data fusion algorithms are widely applied in dimensional metrology for quality assessment or surface reconstruction. Multi-sensor point cloud fusion combines the advantages of multiple sensors by merging their measurements into a single coordinate system and reducing the prediction uncertainty and systematic errors. Algorithms designed for these tasks employ many methods that require thorough evaluations through a common framework. To address this need, this paper proposes a framework for simultaneous registration and approximation, and introduces a reference data generator for unbiased evaluations of data fusion algorithms with heterogeneous and anisotropic noise assumptions for applications involving multiple sensors. The bias for the generated reference data is evaluated close to floating point accuracy, which validates the generation method, and uncertainty evaluation on ICP variants reveals that reference data is more suitable to evaluate point cloud fusion algorithms. The proposed framework and data generator allows developing and validating more accurate data fusion algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信