{"title":"利用自适应空间特征学习重建无线电地图","authors":"Jie Yang, Wenbin Guo","doi":"10.1049/2024/7090832","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Radio map reconstruction is a fundamental problem of great relevance in numerous real-world applications, such as network planning and fingerprint localization. Sampling the complete radio map is prohibitively costly in practice and difficult to achieve. Such methods for reconstructing radio maps from a subset of measurements are now gaining additional attention. In this paper, we first explore the spatial features of signals on the radio map and formulate the reconstruction problem as an optimization problem with feature penalties. Then, we propose an iteration algorithm with spatial feature learning to reconstruct signals on the radio map, which improves the reconstruction accuracy by using an adaptive feature dictionary. Numerical examples are given to demonstrate the viability and performance of our method at last.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7090832","citationCount":"0","resultStr":"{\"title\":\"Radio Map Reconstruction With Adaptive Spatial Feature Learning\",\"authors\":\"Jie Yang, Wenbin Guo\",\"doi\":\"10.1049/2024/7090832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Radio map reconstruction is a fundamental problem of great relevance in numerous real-world applications, such as network planning and fingerprint localization. Sampling the complete radio map is prohibitively costly in practice and difficult to achieve. Such methods for reconstructing radio maps from a subset of measurements are now gaining additional attention. In this paper, we first explore the spatial features of signals on the radio map and formulate the reconstruction problem as an optimization problem with feature penalties. Then, we propose an iteration algorithm with spatial feature learning to reconstruct signals on the radio map, which improves the reconstruction accuracy by using an adaptive feature dictionary. Numerical examples are given to demonstrate the viability and performance of our method at last.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7090832\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/7090832\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7090832","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Radio Map Reconstruction With Adaptive Spatial Feature Learning
Radio map reconstruction is a fundamental problem of great relevance in numerous real-world applications, such as network planning and fingerprint localization. Sampling the complete radio map is prohibitively costly in practice and difficult to achieve. Such methods for reconstructing radio maps from a subset of measurements are now gaining additional attention. In this paper, we first explore the spatial features of signals on the radio map and formulate the reconstruction problem as an optimization problem with feature penalties. Then, we propose an iteration algorithm with spatial feature learning to reconstruct signals on the radio map, which improves the reconstruction accuracy by using an adaptive feature dictionary. Numerical examples are given to demonstrate the viability and performance of our method at last.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf