{"title":"利用无损检测技术研究钢桥面环氧沥青铺装在湿气扩散条件下隐藏缺陷的机理","authors":"Wen Nie, Duanyi Wang, Junjian Yan, Xiaoning Zhang","doi":"10.1155/2024/6490775","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study conducts a rigorous analysis of the moisture diffusion mechanism that undermines the adhesive layer of epoxy asphalt (EA) pavement on steel bridge decks, thereby fostering latent distresses. Furthermore, a novel and highly efficacious approach for detecting these concealed distresses is introduced. The findings of water vapor permeability tests conclusively reveal that the moisture diffusion coefficients of the upper and lower layers of the EA pavement stand at 0.1238 mm<sup>2</sup>/s and 0.0879 mm<sup>2</sup>/s, respectively, highlighting this disparity as the primary trigger for concealed issues like pavement delamination and swelling. Leveraging the combined capabilities of three-dimensional ground-penetrating radar (3D-GPR) and infrared thermography, this research reliably detects, identifies, and pinpoints concealed defects at three strategic locations on the steel bridge deck. The integration of these two technologies has exhibited remarkable proficiency in identifying concealed damages. Consequently, this study lays a substantial foundation for evaluating and detecting concealed distress in EA pavements atop steel bridge decks.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6490775","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Mechanism of Hidden Defects in Epoxy Asphalt Pavement on Steel Bridge Decks Under Moisture Diffusion Using Nondestructive Detection Techniques\",\"authors\":\"Wen Nie, Duanyi Wang, Junjian Yan, Xiaoning Zhang\",\"doi\":\"10.1155/2024/6490775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This study conducts a rigorous analysis of the moisture diffusion mechanism that undermines the adhesive layer of epoxy asphalt (EA) pavement on steel bridge decks, thereby fostering latent distresses. Furthermore, a novel and highly efficacious approach for detecting these concealed distresses is introduced. The findings of water vapor permeability tests conclusively reveal that the moisture diffusion coefficients of the upper and lower layers of the EA pavement stand at 0.1238 mm<sup>2</sup>/s and 0.0879 mm<sup>2</sup>/s, respectively, highlighting this disparity as the primary trigger for concealed issues like pavement delamination and swelling. Leveraging the combined capabilities of three-dimensional ground-penetrating radar (3D-GPR) and infrared thermography, this research reliably detects, identifies, and pinpoints concealed defects at three strategic locations on the steel bridge deck. The integration of these two technologies has exhibited remarkable proficiency in identifying concealed damages. Consequently, this study lays a substantial foundation for evaluating and detecting concealed distress in EA pavements atop steel bridge decks.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6490775\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6490775\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6490775","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Investigation of the Mechanism of Hidden Defects in Epoxy Asphalt Pavement on Steel Bridge Decks Under Moisture Diffusion Using Nondestructive Detection Techniques
This study conducts a rigorous analysis of the moisture diffusion mechanism that undermines the adhesive layer of epoxy asphalt (EA) pavement on steel bridge decks, thereby fostering latent distresses. Furthermore, a novel and highly efficacious approach for detecting these concealed distresses is introduced. The findings of water vapor permeability tests conclusively reveal that the moisture diffusion coefficients of the upper and lower layers of the EA pavement stand at 0.1238 mm2/s and 0.0879 mm2/s, respectively, highlighting this disparity as the primary trigger for concealed issues like pavement delamination and swelling. Leveraging the combined capabilities of three-dimensional ground-penetrating radar (3D-GPR) and infrared thermography, this research reliably detects, identifies, and pinpoints concealed defects at three strategic locations on the steel bridge deck. The integration of these two technologies has exhibited remarkable proficiency in identifying concealed damages. Consequently, this study lays a substantial foundation for evaluating and detecting concealed distress in EA pavements atop steel bridge decks.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.