{"title":"以尿素为基础构建燃料电池用聚(联苯烯)阴离子交换膜的氢键网络","authors":"Yiman Gu, Xiaoyu Chi, Tianming Dong, Yanchao Zhang, Zhanyu Li, Zhe Wang","doi":"10.1002/cnl2.176","DOIUrl":null,"url":null,"abstract":"<p>In recent decades, the “trade-off” problem of anion exchange membranes (AEMs) has been a concern. Herein, a series of urea-based multication poly(biphenyl alkylene)s AEMs are prepared by obtaining an ether bond-free backbone through ultra-strong acid catalysis, grafting it with multication side chains, and then by accessing urea-based groups in different ratios. By accessing the urea group, noncovalent bonds are used to link the molecules to act as cross-links, giving them solubility that chemical cross-links do not have. The PBTA-DQA-35U membrane possessed the highest ionic conductivity of 62.43 mS/cm. Compared with the PBTA-DQA membrane (80°C, WU = 20.45%, SR = 17.67%), the PBTA-DQA-25U membrane showed an increase in water uptake but not much change in swelling (WU = 30.23%, SR = 19.36%), which was attributed to the fact that the hydrophilic urea groups provide cation transport sites while hydrogen bonding inhibits membrane swelling. The PBTA-DQA-35U ionic conductivity is retained above 75% after 960 h of alkali stability testing. The power density of the MEA device assembled using PBTA-DQA-35U membrane is 421.78 mW/cm<sup>2</sup>.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 6","pages":"1092-1100"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.176","citationCount":"0","resultStr":"{\"title\":\"Urea-based construction of hydrogen bonding networks for poly(biphenyl alkylene)s anion exchange membrane for fuel cells\",\"authors\":\"Yiman Gu, Xiaoyu Chi, Tianming Dong, Yanchao Zhang, Zhanyu Li, Zhe Wang\",\"doi\":\"10.1002/cnl2.176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent decades, the “trade-off” problem of anion exchange membranes (AEMs) has been a concern. Herein, a series of urea-based multication poly(biphenyl alkylene)s AEMs are prepared by obtaining an ether bond-free backbone through ultra-strong acid catalysis, grafting it with multication side chains, and then by accessing urea-based groups in different ratios. By accessing the urea group, noncovalent bonds are used to link the molecules to act as cross-links, giving them solubility that chemical cross-links do not have. The PBTA-DQA-35U membrane possessed the highest ionic conductivity of 62.43 mS/cm. Compared with the PBTA-DQA membrane (80°C, WU = 20.45%, SR = 17.67%), the PBTA-DQA-25U membrane showed an increase in water uptake but not much change in swelling (WU = 30.23%, SR = 19.36%), which was attributed to the fact that the hydrophilic urea groups provide cation transport sites while hydrogen bonding inhibits membrane swelling. The PBTA-DQA-35U ionic conductivity is retained above 75% after 960 h of alkali stability testing. The power density of the MEA device assembled using PBTA-DQA-35U membrane is 421.78 mW/cm<sup>2</sup>.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"3 6\",\"pages\":\"1092-1100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Urea-based construction of hydrogen bonding networks for poly(biphenyl alkylene)s anion exchange membrane for fuel cells
In recent decades, the “trade-off” problem of anion exchange membranes (AEMs) has been a concern. Herein, a series of urea-based multication poly(biphenyl alkylene)s AEMs are prepared by obtaining an ether bond-free backbone through ultra-strong acid catalysis, grafting it with multication side chains, and then by accessing urea-based groups in different ratios. By accessing the urea group, noncovalent bonds are used to link the molecules to act as cross-links, giving them solubility that chemical cross-links do not have. The PBTA-DQA-35U membrane possessed the highest ionic conductivity of 62.43 mS/cm. Compared with the PBTA-DQA membrane (80°C, WU = 20.45%, SR = 17.67%), the PBTA-DQA-25U membrane showed an increase in water uptake but not much change in swelling (WU = 30.23%, SR = 19.36%), which was attributed to the fact that the hydrophilic urea groups provide cation transport sites while hydrogen bonding inhibits membrane swelling. The PBTA-DQA-35U ionic conductivity is retained above 75% after 960 h of alkali stability testing. The power density of the MEA device assembled using PBTA-DQA-35U membrane is 421.78 mW/cm2.