{"title":"空间环境中互动种群模型的非恒定稳定状态和模式形成研究","authors":"R.P. Gupta, Shristi Tiwari, Arun Kumar","doi":"10.1016/j.matcom.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript accounts for an investigation of the complex dynamics of a spatial model for interacting populations. We discuss the existence and boundedness of solutions for the proposed spatio-temporal system. The global stability of the co-existing steady state of the proposed system is analyzed with the help of a suitable Lyapunov function. We provide results on the existence and non-existence of positive non-constant solutions of the model. The priori estimate for the positive steady state is obtained for the nonexistence of the non-constant positive steady state by using the maximum principle. The existence of a non-constant positive steady state is studied with the help of Leray–Schauder degree theory. The stability and Hopf bifurcation are briefly revisited for the co-existing steady state in the corresponding temporal model, where a bubble-like structure is observed. The onset of Hopf bifurcation has been analyzed, and different conditions for the formation of the Turing pattern have been established through diffusion-driven instability analysis. Numerical simulations are performed in detail to figure out the effects of saturated harvesting on Turing patterns. The Turing as well as non-Turing patterns in their respective domains are also examined. Finally, the criteria of Turing–Hopf bifurcation is briefly demonstrated with relevant numerical examples and corresponding plots that give a better illustration of this work.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"229 ","pages":"Pages 652-672"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment\",\"authors\":\"R.P. Gupta, Shristi Tiwari, Arun Kumar\",\"doi\":\"10.1016/j.matcom.2024.10.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript accounts for an investigation of the complex dynamics of a spatial model for interacting populations. We discuss the existence and boundedness of solutions for the proposed spatio-temporal system. The global stability of the co-existing steady state of the proposed system is analyzed with the help of a suitable Lyapunov function. We provide results on the existence and non-existence of positive non-constant solutions of the model. The priori estimate for the positive steady state is obtained for the nonexistence of the non-constant positive steady state by using the maximum principle. The existence of a non-constant positive steady state is studied with the help of Leray–Schauder degree theory. The stability and Hopf bifurcation are briefly revisited for the co-existing steady state in the corresponding temporal model, where a bubble-like structure is observed. The onset of Hopf bifurcation has been analyzed, and different conditions for the formation of the Turing pattern have been established through diffusion-driven instability analysis. Numerical simulations are performed in detail to figure out the effects of saturated harvesting on Turing patterns. The Turing as well as non-Turing patterns in their respective domains are also examined. Finally, the criteria of Turing–Hopf bifurcation is briefly demonstrated with relevant numerical examples and corresponding plots that give a better illustration of this work.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"229 \",\"pages\":\"Pages 652-672\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004129\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004129","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment
This manuscript accounts for an investigation of the complex dynamics of a spatial model for interacting populations. We discuss the existence and boundedness of solutions for the proposed spatio-temporal system. The global stability of the co-existing steady state of the proposed system is analyzed with the help of a suitable Lyapunov function. We provide results on the existence and non-existence of positive non-constant solutions of the model. The priori estimate for the positive steady state is obtained for the nonexistence of the non-constant positive steady state by using the maximum principle. The existence of a non-constant positive steady state is studied with the help of Leray–Schauder degree theory. The stability and Hopf bifurcation are briefly revisited for the co-existing steady state in the corresponding temporal model, where a bubble-like structure is observed. The onset of Hopf bifurcation has been analyzed, and different conditions for the formation of the Turing pattern have been established through diffusion-driven instability analysis. Numerical simulations are performed in detail to figure out the effects of saturated harvesting on Turing patterns. The Turing as well as non-Turing patterns in their respective domains are also examined. Finally, the criteria of Turing–Hopf bifurcation is briefly demonstrated with relevant numerical examples and corresponding plots that give a better illustration of this work.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.