自注入中山代数的刚性维数

Pub Date : 2024-10-22 DOI:10.1016/j.jalgebra.2024.09.033
Wei Hu , Xiaojuan Yin
{"title":"自注入中山代数的刚性维数","authors":"Wei Hu ,&nbsp;Xiaojuan Yin","doi":"10.1016/j.jalgebra.2024.09.033","DOIUrl":null,"url":null,"abstract":"<div><div>Rigidity dimension is a new homological dimension which is intended to measure the quality of the best resolution of an algebra. In this paper, we determine the rigidity dimensions of self-injective Nakayama algebras <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> with <em>n</em> simple modules and the Loewy length <span><math><mi>m</mi><mo>⩾</mo><mi>n</mi></math></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity dimensions of self-injective Nakayama algebras\",\"authors\":\"Wei Hu ,&nbsp;Xiaojuan Yin\",\"doi\":\"10.1016/j.jalgebra.2024.09.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rigidity dimension is a new homological dimension which is intended to measure the quality of the best resolution of an algebra. In this paper, we determine the rigidity dimensions of self-injective Nakayama algebras <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> with <em>n</em> simple modules and the Loewy length <span><math><mi>m</mi><mo>⩾</mo><mi>n</mi></math></span>.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

刚性维度是一种新的同调维度,用于衡量代数最佳解析的质量。在本文中,我们确定了具有 n 个简单模块和洛维长度 m⩾n 的自注入中山代数 An,m 的刚性维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rigidity dimensions of self-injective Nakayama algebras
Rigidity dimension is a new homological dimension which is intended to measure the quality of the best resolution of an algebra. In this paper, we determine the rigidity dimensions of self-injective Nakayama algebras An,m with n simple modules and the Loewy length mn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信