作为李代数的三角矩阵代数的级数:重温

Pub Date : 2024-10-21 DOI:10.1016/j.jalgebra.2024.10.018
Plamen Koshlukov , Felipe Yukihide Yasumura
{"title":"作为李代数的三角矩阵代数的级数:重温","authors":"Plamen Koshlukov ,&nbsp;Felipe Yukihide Yasumura","doi":"10.1016/j.jalgebra.2024.10.018","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the group gradings on the algebras of upper triangular matrices over an arbitrary field, viewed as Lie algebras. Classification results were obtained in 2017 by the same authors when the base field has characteristic different from 2. In this paper we provide streamlined proofs of these results. Moreover we present a complete classification of isomorphism classes of the group gradings on these algebras over an arbitrary field. Recall that two graded Lie algebras <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are practically-isomorphic if there exists an (ungraded) algebra isomorphism <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> that induces a graded-algebra isomorphism <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><mi>z</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>→</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><mi>z</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. We provide a classification of the practically-isomorphism classes of the group gradings on the Lie algebra of upper triangular matrices. The latter classification is a better alternative way to consider these gradings up to being essentially the same object. Finally, we investigate in details the case where the characteristic of the base field is 2, a topic that was neglected in previous works.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradings on the algebra of triangular matrices as a Lie algebra: Revisited\",\"authors\":\"Plamen Koshlukov ,&nbsp;Felipe Yukihide Yasumura\",\"doi\":\"10.1016/j.jalgebra.2024.10.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the group gradings on the algebras of upper triangular matrices over an arbitrary field, viewed as Lie algebras. Classification results were obtained in 2017 by the same authors when the base field has characteristic different from 2. In this paper we provide streamlined proofs of these results. Moreover we present a complete classification of isomorphism classes of the group gradings on these algebras over an arbitrary field. Recall that two graded Lie algebras <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are practically-isomorphic if there exists an (ungraded) algebra isomorphism <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> that induces a graded-algebra isomorphism <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><mi>z</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>→</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><mi>z</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. We provide a classification of the practically-isomorphism classes of the group gradings on the Lie algebra of upper triangular matrices. The latter classification is a better alternative way to consider these gradings up to being essentially the same object. Finally, we investigate in details the case where the characteristic of the base field is 2, a topic that was neglected in previous works.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了任意域上的上三角矩阵的群分级,并将其视为李代数。在本文中,我们提供了这些结果的简化证明。此外,我们还提出了这些任意域上的群分级的同构类的完整分类。回想一下,如果存在一个(未分级的)代数同构 L1→L2 引发一个分级代数同构 L1/z(L1)→L2/z(L2),那么两个分级列代数 L1 和 L2 实际上是同构的。我们对上三角矩阵的李代数上的群分级的实际同构类进行了分类。后一种分类是一种更好的替代方法,可以将这些分级视为本质上相同的对象。最后,我们详细研究了基场特征为 2 的情况,这是以前的研究忽略的一个主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gradings on the algebra of triangular matrices as a Lie algebra: Revisited
We investigate the group gradings on the algebras of upper triangular matrices over an arbitrary field, viewed as Lie algebras. Classification results were obtained in 2017 by the same authors when the base field has characteristic different from 2. In this paper we provide streamlined proofs of these results. Moreover we present a complete classification of isomorphism classes of the group gradings on these algebras over an arbitrary field. Recall that two graded Lie algebras L1 and L2 are practically-isomorphic if there exists an (ungraded) algebra isomorphism L1L2 that induces a graded-algebra isomorphism L1/z(L1)L2/z(L2). We provide a classification of the practically-isomorphism classes of the group gradings on the Lie algebra of upper triangular matrices. The latter classification is a better alternative way to consider these gradings up to being essentially the same object. Finally, we investigate in details the case where the characteristic of the base field is 2, a topic that was neglected in previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信