代数群的对映模:归纳和投影盖

Pub Date : 2024-10-22 DOI:10.1016/j.jalgebra.2024.10.019
Dylan Johnston
{"title":"代数群的对映模:归纳和投影盖","authors":"Dylan Johnston","doi":"10.1016/j.jalgebra.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we investigate contramodules for algebraic groups. Namely, we give contramodule analogs to two <span><math><msup><mrow><mn>20</mn></mrow><mrow><mtext>th</mtext></mrow></msup></math></span> century results about comodules. Firstly, we show that induction of contramodules over coordinate rings of algebraic groups is exact if and only if the associated quotient variety is affine. Secondly, we give an inverse limit theorem for constructing projective covers of simple <em>G</em>-modules using <em>G</em>-structures of projective covers of simple modules of the first Frobenius kernel, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We conclude by showing that the inverse limit theorem is a special case of a more general phenomenon between injective covers in <span><math><mi>k</mi><mo>[</mo><mi>G</mi><mo>]</mo></math></span>-Comod and projective covers in <span><math><mi>k</mi><mo>[</mo><mi>G</mi><mo>]</mo></math></span>-Contra.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contramodules for algebraic groups: Induction and projective covers\",\"authors\":\"Dylan Johnston\",\"doi\":\"10.1016/j.jalgebra.2024.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we investigate contramodules for algebraic groups. Namely, we give contramodule analogs to two <span><math><msup><mrow><mn>20</mn></mrow><mrow><mtext>th</mtext></mrow></msup></math></span> century results about comodules. Firstly, we show that induction of contramodules over coordinate rings of algebraic groups is exact if and only if the associated quotient variety is affine. Secondly, we give an inverse limit theorem for constructing projective covers of simple <em>G</em>-modules using <em>G</em>-structures of projective covers of simple modules of the first Frobenius kernel, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We conclude by showing that the inverse limit theorem is a special case of a more general phenomenon between injective covers in <span><math><mi>k</mi><mo>[</mo><mi>G</mi><mo>]</mo></math></span>-Comod and projective covers in <span><math><mi>k</mi><mo>[</mo><mi>G</mi><mo>]</mo></math></span>-Contra.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002186932400560X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932400560X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了代数群的反模子。也就是说,我们给出了等映模与 20 世纪关于逗点的两个结果的对应关系。首先,我们证明了代数群坐标环上的反模量归纳是精确的,当且仅当相关商综是仿射的。其次,我们给出了一个逆极限定理,利用第一弗罗本尼乌斯核的简单模块 G1 的投影盖的 G 结构,构造简单 G 模块的投影盖。最后,我们证明了逆极限定理是 k[G]-Comod 中的注入盖和 k[G]-Contra 中的投影盖之间更普遍现象的特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Contramodules for algebraic groups: Induction and projective covers
In this paper we investigate contramodules for algebraic groups. Namely, we give contramodule analogs to two 20th century results about comodules. Firstly, we show that induction of contramodules over coordinate rings of algebraic groups is exact if and only if the associated quotient variety is affine. Secondly, we give an inverse limit theorem for constructing projective covers of simple G-modules using G-structures of projective covers of simple modules of the first Frobenius kernel, G1. We conclude by showing that the inverse limit theorem is a special case of a more general phenomenon between injective covers in k[G]-Comod and projective covers in k[G]-Contra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信