普瑞巴林与 H+、Na+、Mg2+、Ca2+、Cu2+、Zn2+ 相互作用的热力学新见解:平衡常数、焓变和螯合能力

IF 2.2 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Kavosh Majlesi , Concetta De Stefano , Francesco Crea , Clemente Bretti
{"title":"普瑞巴林与 H+、Na+、Mg2+、Ca2+、Cu2+、Zn2+ 相互作用的热力学新见解:平衡常数、焓变和螯合能力","authors":"Kavosh Majlesi ,&nbsp;Concetta De Stefano ,&nbsp;Francesco Crea ,&nbsp;Clemente Bretti","doi":"10.1016/j.jct.2024.107411","DOIUrl":null,"url":null,"abstract":"<div><div>The thermodynamics of the interaction between (S)-(+)-3-aminomethyl-5-methylhexanoic acid (pregabalin) and protons was studied potentiometrically at different temperatures (288.15 ≤ <em>T</em>/K ≤ 310.15), ionic strengths (0.16 ≤ <em>I</em>/mol kg<sup>−1</sup>(H<sub>2</sub>O) ≤ 0.97, NaCl), (0.11 ≤ <em>I</em>/mol kg<sup>−1</sup>(H<sub>2</sub>O) ≤ 1.11, (C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>NI), (0.10 ≤ <em>I</em>/mol kg<sup>−1</sup>(H<sub>2</sub>O) ≤ 1.03, NaClO<sub>4</sub>, only at <em>T</em> = 298.15 K). The protonation constants at infinite dilution and the corresponding enthalpy change values were determined, as well as their parameters for the dependence on the temperature and ionic strength. The results showed that the protonation reactions are exothermic, and that the entropic contribution is the driving force of the processes.<!--> <!-->Formation constants of pregabalin (L) with Zn<sup>2+</sup>, Cu<sup>2+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup> were determined in NaCl(aq) at different ionic strength values, at 298.15 K. Different speciation models were proposed for the various metal/Pregabalin systems: ZnHL<sup>2+</sup>, ZnLOH<sup>0</sup><sub>(aq)</sub>, CuL<sup>+</sup>, CuL<sub>2</sub><sup>0</sup><sub>(aq)</sub>, CaL<sup>+</sup>, CaHL<sup>2+</sup>, and MgL<sup>+</sup>, depending on the different acid–base properties of the metals and the possible formation of sparingly soluble species. The modelling of the thermodynamic formation parameters respect to the temperature and ionic strength variation was carried out by using both the Specific Ion Interaction Theory (SIT) and an extended Debye-Hückel type equation.<!--> <!-->Being Pregabalin an emerging contaminant, it was interesting to investigate its distribution in presence of the investigated metal cations in aqueous solution simulating both biological fluid (urine) and natural water (seawater).</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"201 ","pages":"Article 107411"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New thermodynamic insights into pregabalin interactions with H+, Na+, Mg2+, Ca2+, Cu2+, Zn2+: Equilibrium constants, enthalpy changes and sequestering ability\",\"authors\":\"Kavosh Majlesi ,&nbsp;Concetta De Stefano ,&nbsp;Francesco Crea ,&nbsp;Clemente Bretti\",\"doi\":\"10.1016/j.jct.2024.107411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The thermodynamics of the interaction between (S)-(+)-3-aminomethyl-5-methylhexanoic acid (pregabalin) and protons was studied potentiometrically at different temperatures (288.15 ≤ <em>T</em>/K ≤ 310.15), ionic strengths (0.16 ≤ <em>I</em>/mol kg<sup>−1</sup>(H<sub>2</sub>O) ≤ 0.97, NaCl), (0.11 ≤ <em>I</em>/mol kg<sup>−1</sup>(H<sub>2</sub>O) ≤ 1.11, (C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>NI), (0.10 ≤ <em>I</em>/mol kg<sup>−1</sup>(H<sub>2</sub>O) ≤ 1.03, NaClO<sub>4</sub>, only at <em>T</em> = 298.15 K). The protonation constants at infinite dilution and the corresponding enthalpy change values were determined, as well as their parameters for the dependence on the temperature and ionic strength. The results showed that the protonation reactions are exothermic, and that the entropic contribution is the driving force of the processes.<!--> <!-->Formation constants of pregabalin (L) with Zn<sup>2+</sup>, Cu<sup>2+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup> were determined in NaCl(aq) at different ionic strength values, at 298.15 K. Different speciation models were proposed for the various metal/Pregabalin systems: ZnHL<sup>2+</sup>, ZnLOH<sup>0</sup><sub>(aq)</sub>, CuL<sup>+</sup>, CuL<sub>2</sub><sup>0</sup><sub>(aq)</sub>, CaL<sup>+</sup>, CaHL<sup>2+</sup>, and MgL<sup>+</sup>, depending on the different acid–base properties of the metals and the possible formation of sparingly soluble species. The modelling of the thermodynamic formation parameters respect to the temperature and ionic strength variation was carried out by using both the Specific Ion Interaction Theory (SIT) and an extended Debye-Hückel type equation.<!--> <!-->Being Pregabalin an emerging contaminant, it was interesting to investigate its distribution in presence of the investigated metal cations in aqueous solution simulating both biological fluid (urine) and natural water (seawater).</div></div>\",\"PeriodicalId\":54867,\"journal\":{\"name\":\"Journal of Chemical Thermodynamics\",\"volume\":\"201 \",\"pages\":\"Article 107411\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021961424001642\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424001642","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在不同温度(288.15 ≤ T/K ≤ 310.15)、离子强度(0.16 ≤ I/mol kg-1(H2O) ≤ 0.97,NaCl)、(0.11 ≤ I/mol kg-1(H2O) ≤ 1.11,(C2H5)4NI)、(0.10 ≤ I/mol kg-1(H2O) ≤ 1.03,NaClO4,仅在 T = 298.15 K 时)。测定了无限稀释时的质子化常数和相应的焓变值,以及它们与温度和离子强度有关的参数。结果表明,质子化反应是放热反应,熵贡献是过程的驱动力。在 298.15 K 的 NaCl(aq)中,测定了不同离子强度值下普瑞巴林(L)与 Zn2+、Cu2+、Ca2+ 和 Mg2+ 的形成常数:ZnHL2+、ZnLOH0(aq)、CuL+、CuL20(aq)、CaL+、CaHL2+ 和 MgL+。通过使用特定离子相互作用理论(SIT)和扩展的 Debye-Hückel 型方程,对温度和离子强度变化的热力学形成参数进行了建模。由于普瑞巴林是一种新出现的污染物,因此有必要研究其在模拟生物液体(尿液)和天然水(海水)的水溶液中与所研究的金属阳离子存在时的分布情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New thermodynamic insights into pregabalin interactions with H+, Na+, Mg2+, Ca2+, Cu2+, Zn2+: Equilibrium constants, enthalpy changes and sequestering ability

New thermodynamic insights into pregabalin interactions with H+, Na+, Mg2+, Ca2+, Cu2+, Zn2+: Equilibrium constants, enthalpy changes and sequestering ability
The thermodynamics of the interaction between (S)-(+)-3-aminomethyl-5-methylhexanoic acid (pregabalin) and protons was studied potentiometrically at different temperatures (288.15 ≤ T/K ≤ 310.15), ionic strengths (0.16 ≤ I/mol kg−1(H2O) ≤ 0.97, NaCl), (0.11 ≤ I/mol kg−1(H2O) ≤ 1.11, (C2H5)4NI), (0.10 ≤ I/mol kg−1(H2O) ≤ 1.03, NaClO4, only at T = 298.15 K). The protonation constants at infinite dilution and the corresponding enthalpy change values were determined, as well as their parameters for the dependence on the temperature and ionic strength. The results showed that the protonation reactions are exothermic, and that the entropic contribution is the driving force of the processes. Formation constants of pregabalin (L) with Zn2+, Cu2+, Ca2+, and Mg2+ were determined in NaCl(aq) at different ionic strength values, at 298.15 K. Different speciation models were proposed for the various metal/Pregabalin systems: ZnHL2+, ZnLOH0(aq), CuL+, CuL20(aq), CaL+, CaHL2+, and MgL+, depending on the different acid–base properties of the metals and the possible formation of sparingly soluble species. The modelling of the thermodynamic formation parameters respect to the temperature and ionic strength variation was carried out by using both the Specific Ion Interaction Theory (SIT) and an extended Debye-Hückel type equation. Being Pregabalin an emerging contaminant, it was interesting to investigate its distribution in presence of the investigated metal cations in aqueous solution simulating both biological fluid (urine) and natural water (seawater).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Thermodynamics
Journal of Chemical Thermodynamics 工程技术-热力学
CiteScore
5.60
自引率
15.40%
发文量
199
审稿时长
79 days
期刊介绍: The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published. The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed. Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered. The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review. Contributions of a routine nature or reporting on uncharacterised materials are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信