{"title":"带孔非持久性节理岩体的破坏特征和泄压效果","authors":"","doi":"10.1016/j.tafmec.2024.104733","DOIUrl":null,"url":null,"abstract":"<div><div>In tunnel engineering, the rock mass contains a significant number of irregularly distributed joints, and typically exhibits high energy accumulation, thereby posing a risk of rockburst occurrence. Therefore, it is of paramount importance to investigate the fracture propagation behavior in jointed rock masses and assess the impact of borehole pressure relief on mitigating rockburst occurrences for effective prevention and control measures. This paper focuses on failure characteristics and pressure relief effectiveness of non-persistent jointed rock mass with holes through laboratory testing and numerical simulation. In laboratory experiments, rock samples are prepared to include a range of crack dip angles and circular holes. Then, the crack propagation law of crack inclination and circular hole is studied by AE and DIC technology. The experimental results show that with the increase of fracture dip angle, the peak strength and energy change of the sample decrease first and then increase. Due to the existence of holes, the crack propagation direction of the original crack is changed. After drilling, the strain energy of the sample is obviously reduced, which shows that the drilling pressure relief effect is obvious, which can effectively reduce the energy accumulated inside the rock mass and reduce the risk of rockburst. Finally, the PFC numerical simulation software is used to analyze the micro-failure process and energy change law of the sample from three aspects: the relative position of cracks and holes, the diameter of boreholes and the spacing of boreholes. Further understanding of the energy dissipation law and mechanical behavior characteristics of jointed rock mass provides a reference for exploring the pressure relief effect of rock mass and preventing rockburst.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure characteristics and pressure relief effectiveness of non-persistent jointed rock mass with holes\",\"authors\":\"\",\"doi\":\"10.1016/j.tafmec.2024.104733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In tunnel engineering, the rock mass contains a significant number of irregularly distributed joints, and typically exhibits high energy accumulation, thereby posing a risk of rockburst occurrence. Therefore, it is of paramount importance to investigate the fracture propagation behavior in jointed rock masses and assess the impact of borehole pressure relief on mitigating rockburst occurrences for effective prevention and control measures. This paper focuses on failure characteristics and pressure relief effectiveness of non-persistent jointed rock mass with holes through laboratory testing and numerical simulation. In laboratory experiments, rock samples are prepared to include a range of crack dip angles and circular holes. Then, the crack propagation law of crack inclination and circular hole is studied by AE and DIC technology. The experimental results show that with the increase of fracture dip angle, the peak strength and energy change of the sample decrease first and then increase. Due to the existence of holes, the crack propagation direction of the original crack is changed. After drilling, the strain energy of the sample is obviously reduced, which shows that the drilling pressure relief effect is obvious, which can effectively reduce the energy accumulated inside the rock mass and reduce the risk of rockburst. Finally, the PFC numerical simulation software is used to analyze the micro-failure process and energy change law of the sample from three aspects: the relative position of cracks and holes, the diameter of boreholes and the spacing of boreholes. Further understanding of the energy dissipation law and mechanical behavior characteristics of jointed rock mass provides a reference for exploring the pressure relief effect of rock mass and preventing rockburst.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016784422400483X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016784422400483X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Failure characteristics and pressure relief effectiveness of non-persistent jointed rock mass with holes
In tunnel engineering, the rock mass contains a significant number of irregularly distributed joints, and typically exhibits high energy accumulation, thereby posing a risk of rockburst occurrence. Therefore, it is of paramount importance to investigate the fracture propagation behavior in jointed rock masses and assess the impact of borehole pressure relief on mitigating rockburst occurrences for effective prevention and control measures. This paper focuses on failure characteristics and pressure relief effectiveness of non-persistent jointed rock mass with holes through laboratory testing and numerical simulation. In laboratory experiments, rock samples are prepared to include a range of crack dip angles and circular holes. Then, the crack propagation law of crack inclination and circular hole is studied by AE and DIC technology. The experimental results show that with the increase of fracture dip angle, the peak strength and energy change of the sample decrease first and then increase. Due to the existence of holes, the crack propagation direction of the original crack is changed. After drilling, the strain energy of the sample is obviously reduced, which shows that the drilling pressure relief effect is obvious, which can effectively reduce the energy accumulated inside the rock mass and reduce the risk of rockburst. Finally, the PFC numerical simulation software is used to analyze the micro-failure process and energy change law of the sample from three aspects: the relative position of cracks and holes, the diameter of boreholes and the spacing of boreholes. Further understanding of the energy dissipation law and mechanical behavior characteristics of jointed rock mass provides a reference for exploring the pressure relief effect of rock mass and preventing rockburst.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.