{"title":"具有高强度和韧性的可转移 β 型 Ti-8V4Mo3Cr3Zr3Al 合金的微观结构和性能研究","authors":"Xiang Gao , Aili Tao , Mingcong Zou , Zaidong Xu","doi":"10.1016/j.intermet.2024.108547","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a new type of Ti-8V-4Mo-3Cr-3Zr-3Al metastable β-type titanium alloy is designed based on alloy design parameters such as valence electron concentration (VEC), <em>Bo</em>, and <em>Md</em>, and combines them with the empirical criterion of molybdenum equivalent fractionation. Optimize the microstructure of the alloy through processes such as cold rolling, annealing, and aging treatment to obtain good mechanical properties. The microstructure of cold rolling and post rolling heat treatment was observed and analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM), and the tensile properties of the alloy were tested. The characteristics of the alloy in terms of microstructure and properties were summarized and analyzed. The results show that the cold formability of the alloy after solid solution treatment is good, with a cold rolling reduction of over 85 %, and a large number of deformation twins generated during the cold rolling process. The yield strength after annealing and recrystallization is up to 1160 MPa, and elongation is 18.9 %. The final performance of the aged alloy is 1510 MPa for yield strength and 5 % for elongation.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108547"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the microstructure and properties of metastable β type Ti-8V4Mo3Cr3Zr3Al alloy with high strength and toughness\",\"authors\":\"Xiang Gao , Aili Tao , Mingcong Zou , Zaidong Xu\",\"doi\":\"10.1016/j.intermet.2024.108547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a new type of Ti-8V-4Mo-3Cr-3Zr-3Al metastable β-type titanium alloy is designed based on alloy design parameters such as valence electron concentration (VEC), <em>Bo</em>, and <em>Md</em>, and combines them with the empirical criterion of molybdenum equivalent fractionation. Optimize the microstructure of the alloy through processes such as cold rolling, annealing, and aging treatment to obtain good mechanical properties. The microstructure of cold rolling and post rolling heat treatment was observed and analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM), and the tensile properties of the alloy were tested. The characteristics of the alloy in terms of microstructure and properties were summarized and analyzed. The results show that the cold formability of the alloy after solid solution treatment is good, with a cold rolling reduction of over 85 %, and a large number of deformation twins generated during the cold rolling process. The yield strength after annealing and recrystallization is up to 1160 MPa, and elongation is 18.9 %. The final performance of the aged alloy is 1510 MPa for yield strength and 5 % for elongation.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"175 \",\"pages\":\"Article 108547\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524003662\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003662","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Research on the microstructure and properties of metastable β type Ti-8V4Mo3Cr3Zr3Al alloy with high strength and toughness
In this paper, a new type of Ti-8V-4Mo-3Cr-3Zr-3Al metastable β-type titanium alloy is designed based on alloy design parameters such as valence electron concentration (VEC), Bo, and Md, and combines them with the empirical criterion of molybdenum equivalent fractionation. Optimize the microstructure of the alloy through processes such as cold rolling, annealing, and aging treatment to obtain good mechanical properties. The microstructure of cold rolling and post rolling heat treatment was observed and analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM), and the tensile properties of the alloy were tested. The characteristics of the alloy in terms of microstructure and properties were summarized and analyzed. The results show that the cold formability of the alloy after solid solution treatment is good, with a cold rolling reduction of over 85 %, and a large number of deformation twins generated during the cold rolling process. The yield strength after annealing and recrystallization is up to 1160 MPa, and elongation is 18.9 %. The final performance of the aged alloy is 1510 MPa for yield strength and 5 % for elongation.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.