分层网格上的并行欧拉-拉格朗日耦合方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tim Wegmann , Ansgar Niemöller , Matthias Meinke , Wolfgang Schröder
{"title":"分层网格上的并行欧拉-拉格朗日耦合方法","authors":"Tim Wegmann ,&nbsp;Ansgar Niemöller ,&nbsp;Matthias Meinke ,&nbsp;Wolfgang Schröder","doi":"10.1016/j.jcp.2024.113509","DOIUrl":null,"url":null,"abstract":"<div><div>An Eulerian-Lagrangian coupling method based on hierarchical meshes is presented, which allows an efficient parallelization on high-performance computing hardware. It features an interleaved execution pattern with non-blocking communication, where the hierarchical mesh structure facilitates the redistribution of the computational load. The Lagrangian and Eulerian solvers use hierarchical Cartesian meshes which share a common coarse mesh level. The domain decomposition is based on a space-filling curve defined on the joint computational mesh, where the load is projected to a coarse mesh level used for the partitioning. The performance of the coupled method is evaluated for the problem of spray modeling in turbulent flow. A solution adaptive mesh is utilized for the large-eddy simulation of the flow field and the Lagrangian tracking method is used for the spray particles. Static and dynamic workload estimators are compared with respect to the alleviation of load imbalances. Liquid fuel spray injection in a constant pressure chamber and in an internal combustion engine serves as applications with varying scale resolution and localized computational load. The parallel efficiency of the approach on high performance systems is demonstrated for meshes with up to <span><math><mn>2.8</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup></math></span> cells and <span><math><mn>21</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup></math></span> particles. Detailed performance analyses show a performance gain of the novel algorithm of approx. 20% compared to a non-interleaved time step execution for two-way coupled spray injection simulations. Results of strong scaling experiments at different injection phases show a good parallel performance with an efficiency of up to 81% using 262000 MPI processes.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113509"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Eulerian-Lagrangian coupling method on hierarchical meshes\",\"authors\":\"Tim Wegmann ,&nbsp;Ansgar Niemöller ,&nbsp;Matthias Meinke ,&nbsp;Wolfgang Schröder\",\"doi\":\"10.1016/j.jcp.2024.113509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An Eulerian-Lagrangian coupling method based on hierarchical meshes is presented, which allows an efficient parallelization on high-performance computing hardware. It features an interleaved execution pattern with non-blocking communication, where the hierarchical mesh structure facilitates the redistribution of the computational load. The Lagrangian and Eulerian solvers use hierarchical Cartesian meshes which share a common coarse mesh level. The domain decomposition is based on a space-filling curve defined on the joint computational mesh, where the load is projected to a coarse mesh level used for the partitioning. The performance of the coupled method is evaluated for the problem of spray modeling in turbulent flow. A solution adaptive mesh is utilized for the large-eddy simulation of the flow field and the Lagrangian tracking method is used for the spray particles. Static and dynamic workload estimators are compared with respect to the alleviation of load imbalances. Liquid fuel spray injection in a constant pressure chamber and in an internal combustion engine serves as applications with varying scale resolution and localized computational load. The parallel efficiency of the approach on high performance systems is demonstrated for meshes with up to <span><math><mn>2.8</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup></math></span> cells and <span><math><mn>21</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup></math></span> particles. Detailed performance analyses show a performance gain of the novel algorithm of approx. 20% compared to a non-interleaved time step execution for two-way coupled spray injection simulations. Results of strong scaling experiments at different injection phases show a good parallel performance with an efficiency of up to 81% using 262000 MPI processes.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113509\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007575\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007575","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于分层网格的欧拉-拉格朗日耦合方法,该方法可在高性能计算硬件上实现高效并行化。它采用非阻塞通信交错执行模式,分层网格结构有助于重新分配计算负荷。拉格朗日求解器和欧拉求解器使用分层笛卡尔网格,这些网格共享一个粗网格层。域分解基于在联合计算网格上定义的空间填充曲线,载荷投射到用于分区的粗网格层。针对湍流中的喷雾建模问题,对耦合方法的性能进行了评估。流场的大涡流模拟使用了自适应网格解决方案,喷雾粒子则使用了拉格朗日跟踪方法。比较了静态和动态工作量估算器对减轻负载不平衡的作用。恒压室和内燃机中的液体燃料喷射应用具有不同的尺度分辨率和局部计算负荷。该方法在高性能系统上的并行效率已在网格多达 2.8⋅109 个单元和 21⋅106 个粒子时得到证实。详细的性能分析表明,在双向耦合喷射模拟中,与非交错时间步执行相比,新算法的性能提高了约 20%。不同喷射阶段的强扩展实验结果表明,使用 262000 个 MPI 进程,并行性能良好,效率高达 81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Eulerian-Lagrangian coupling method on hierarchical meshes
An Eulerian-Lagrangian coupling method based on hierarchical meshes is presented, which allows an efficient parallelization on high-performance computing hardware. It features an interleaved execution pattern with non-blocking communication, where the hierarchical mesh structure facilitates the redistribution of the computational load. The Lagrangian and Eulerian solvers use hierarchical Cartesian meshes which share a common coarse mesh level. The domain decomposition is based on a space-filling curve defined on the joint computational mesh, where the load is projected to a coarse mesh level used for the partitioning. The performance of the coupled method is evaluated for the problem of spray modeling in turbulent flow. A solution adaptive mesh is utilized for the large-eddy simulation of the flow field and the Lagrangian tracking method is used for the spray particles. Static and dynamic workload estimators are compared with respect to the alleviation of load imbalances. Liquid fuel spray injection in a constant pressure chamber and in an internal combustion engine serves as applications with varying scale resolution and localized computational load. The parallel efficiency of the approach on high performance systems is demonstrated for meshes with up to 2.8109 cells and 21106 particles. Detailed performance analyses show a performance gain of the novel algorithm of approx. 20% compared to a non-interleaved time step execution for two-way coupled spray injection simulations. Results of strong scaling experiments at different injection phases show a good parallel performance with an efficiency of up to 81% using 262000 MPI processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信