诺特代数的有限呈现问题

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.019
Be'eri Greenfeld
{"title":"诺特代数的有限呈现问题","authors":"Be'eri Greenfeld","doi":"10.1016/j.jalgebra.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that there exists an affine Noetherian algebra over a field of characteristic zero which is not finitely presented. Specifically, we prove that the Medvedev–Passman–Resco–Small algebra, recently shown to form a counterexample to the stability problem for Noetherian algebras, is not finitely presented. This answers a question due to Bergman and Irving in characteristic zero, a case explicitly left open by Resco and Small in 1993, who gave a counterexample to this question in positive characteristic.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The finite presentation problem for Noetherian algebras\",\"authors\":\"Be'eri Greenfeld\",\"doi\":\"10.1016/j.jalgebra.2024.09.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that there exists an affine Noetherian algebra over a field of characteristic zero which is not finitely presented. Specifically, we prove that the Medvedev–Passman–Resco–Small algebra, recently shown to form a counterexample to the stability problem for Noetherian algebras, is not finitely presented. This answers a question due to Bergman and Irving in characteristic zero, a case explicitly left open by Resco and Small in 1993, who gave a counterexample to this question in positive characteristic.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002186932400526X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932400526X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在特征为零的域上存在一个非有限呈现的仿射诺特代数。具体地说,我们证明了梅德韦杰夫-帕斯曼-雷斯科-斯莫尔代数(最近被证明是诺特代数稳定性问题的反例)不是有限呈现的。这回答了伯格曼和欧文在零特征中提出的一个问题,1993 年,雷斯科和斯莫尔明确地提出了这个问题在正特征中的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The finite presentation problem for Noetherian algebras
We prove that there exists an affine Noetherian algebra over a field of characteristic zero which is not finitely presented. Specifically, we prove that the Medvedev–Passman–Resco–Small algebra, recently shown to form a counterexample to the stability problem for Noetherian algebras, is not finitely presented. This answers a question due to Bergman and Irving in characteristic zero, a case explicitly left open by Resco and Small in 1993, who gave a counterexample to this question in positive characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信