Jakob Baumann, Matthias Pfretzschner, Ignaz Rutter
{"title":"顶点拆分至最多 1 路径宽度的参数化复杂度","authors":"Jakob Baumann, Matthias Pfretzschner, Ignaz Rutter","doi":"10.1016/j.tcs.2024.114928","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the planarization of 2-layered straight-line drawings, we consider the problem of modifying a graph such that the resulting graph has pathwidth at most 1. The problem <span>Pathwidth-One Vertex Explosion</span> (<span>POVE</span>) asks whether such a graph can be obtained using at most <em>k</em> vertex explosions, where a <em>vertex explosion</em> replaces a vertex <em>v</em> by <span><math><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo></math></span> degree-1 vertices, each incident to exactly one edge that was originally incident to <em>v</em>. For <span>POVE</span>, we give an FPT algorithm with running time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>4</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>⋅</mo><mi>m</mi><mo>)</mo></math></span> and an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> kernel, thereby improving over the <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span>-kernel by Ahmed et al. <span><span>[2]</span></span> in a more general setting. Similarly, a <em>vertex split</em> replaces a vertex <em>v</em> by two distinct vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and distributes the edges originally incident to <em>v</em> arbitrarily to <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Analogously to <span>POVE</span>, we define the problem variant <span>Pathwidth-One Vertex Splitting</span> (<span>POVS</span>) that uses the split operation instead of vertex explosions. Here we obtain a linear kernel and an algorithm with running time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mn>6</mn><mi>k</mi><mo>+</mo><mn>12</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>⋅</mo><mi>m</mi><mo>)</mo></math></span>. This answers an open question by Ahmed et al. <span><span>[2]</span></span>.</div><div>Finally, we consider the problem Π<span>-VertexSplitting</span> (Π<span>-VS</span>), which generalizes the problem <span>POVS</span> and asks whether a given graph can be turned into a graph of a specific graph class Π using at most <em>k</em> vertex splits. For graph classes Π that can be defined in monadic second-order graph logic (MSO<sub>2</sub>), we show that the problem Π<span>-VS</span> can be expressed as an MSO<sub>2</sub> formula, resulting in an FPT algorithm for Π<span>-VS</span> parameterized by <em>k</em> if Π additionally has bounded treewidth. We obtain the same result for the problem variant using vertex explosions.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1021 ","pages":"Article 114928"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized complexity of vertex splitting to pathwidth at most 1\",\"authors\":\"Jakob Baumann, Matthias Pfretzschner, Ignaz Rutter\",\"doi\":\"10.1016/j.tcs.2024.114928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the planarization of 2-layered straight-line drawings, we consider the problem of modifying a graph such that the resulting graph has pathwidth at most 1. The problem <span>Pathwidth-One Vertex Explosion</span> (<span>POVE</span>) asks whether such a graph can be obtained using at most <em>k</em> vertex explosions, where a <em>vertex explosion</em> replaces a vertex <em>v</em> by <span><math><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo></math></span> degree-1 vertices, each incident to exactly one edge that was originally incident to <em>v</em>. For <span>POVE</span>, we give an FPT algorithm with running time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>4</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>⋅</mo><mi>m</mi><mo>)</mo></math></span> and an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> kernel, thereby improving over the <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span>-kernel by Ahmed et al. <span><span>[2]</span></span> in a more general setting. Similarly, a <em>vertex split</em> replaces a vertex <em>v</em> by two distinct vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and distributes the edges originally incident to <em>v</em> arbitrarily to <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Analogously to <span>POVE</span>, we define the problem variant <span>Pathwidth-One Vertex Splitting</span> (<span>POVS</span>) that uses the split operation instead of vertex explosions. Here we obtain a linear kernel and an algorithm with running time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mn>6</mn><mi>k</mi><mo>+</mo><mn>12</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>⋅</mo><mi>m</mi><mo>)</mo></math></span>. This answers an open question by Ahmed et al. <span><span>[2]</span></span>.</div><div>Finally, we consider the problem Π<span>-VertexSplitting</span> (Π<span>-VS</span>), which generalizes the problem <span>POVS</span> and asks whether a given graph can be turned into a graph of a specific graph class Π using at most <em>k</em> vertex splits. For graph classes Π that can be defined in monadic second-order graph logic (MSO<sub>2</sub>), we show that the problem Π<span>-VS</span> can be expressed as an MSO<sub>2</sub> formula, resulting in an FPT algorithm for Π<span>-VS</span> parameterized by <em>k</em> if Π additionally has bounded treewidth. We obtain the same result for the problem variant using vertex explosions.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1021 \",\"pages\":\"Article 114928\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005450\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005450","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
受两层直线图平面化的启发,我们考虑了如何修改一个图,使得到的图的路径宽度至多为 1 的问题。路径宽度为 1 的顶点爆炸(POVE)问题问的是,是否能用至多 k 个顶点爆炸得到这样一个图,其中一个顶点爆炸用 deg(v) 度为 1 的顶点替换一个顶点 v,每个顶点都恰好与一条原来与 v 有关的边相连。对于 POVE,我们给出了运行时间为 O(4k⋅m)、内核为 O(k2)的 FPT 算法,从而改进了 Ahmed 等人[2]在更一般情况下的内核为 O(k6)的算法。同样,顶点拆分也是用两个不同的顶点 v1 和 v2 替换一个顶点 v,并将 v 原有的边任意分配给 v1 和 v2。与 POVE 类似,我们定义了问题变体 "路径宽度一顶点分割"(POVS),它使用分割操作代替顶点爆炸。在这里,我们得到了一个线性内核和运行时间为 O((6k+12)k⋅m)的算法。最后,我们考虑了 Π-VertexSplitting (Π-VS)问题,它是对 POVS 问题的概括,问的是给定的图是否能通过最多 k 个顶点分割变成特定图类 Π 的图。对于可以用一元二阶图逻辑(MSO2)定义的图类Π,我们证明了问题Π-VS 可以用 MSO2 公式来表达,如果Π 还具有有界树宽(treewidth),就能得到以 k 为参数的Π-VS 的 FPT 算法。对于使用顶点爆炸的问题变体,我们也得到了同样的结果。
Parameterized complexity of vertex splitting to pathwidth at most 1
Motivated by the planarization of 2-layered straight-line drawings, we consider the problem of modifying a graph such that the resulting graph has pathwidth at most 1. The problem Pathwidth-One Vertex Explosion (POVE) asks whether such a graph can be obtained using at most k vertex explosions, where a vertex explosion replaces a vertex v by degree-1 vertices, each incident to exactly one edge that was originally incident to v. For POVE, we give an FPT algorithm with running time and an kernel, thereby improving over the -kernel by Ahmed et al. [2] in a more general setting. Similarly, a vertex split replaces a vertex v by two distinct vertices and and distributes the edges originally incident to v arbitrarily to and . Analogously to POVE, we define the problem variant Pathwidth-One Vertex Splitting (POVS) that uses the split operation instead of vertex explosions. Here we obtain a linear kernel and an algorithm with running time . This answers an open question by Ahmed et al. [2].
Finally, we consider the problem Π-VertexSplitting (Π-VS), which generalizes the problem POVS and asks whether a given graph can be turned into a graph of a specific graph class Π using at most k vertex splits. For graph classes Π that can be defined in monadic second-order graph logic (MSO2), we show that the problem Π-VS can be expressed as an MSO2 formula, resulting in an FPT algorithm for Π-VS parameterized by k if Π additionally has bounded treewidth. We obtain the same result for the problem variant using vertex explosions.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.