Muhammad Yasir , Xia Tiecheng , Shahid Chaudhary , Abdulrahman Bin Jumah
{"title":"带有巴罗熵修正的 F(R)引力中焦耳-汤姆森膨胀和黑洞阴影的量子引力效应","authors":"Muhammad Yasir , Xia Tiecheng , Shahid Chaudhary , Abdulrahman Bin Jumah","doi":"10.1016/j.jheap.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel investigation into the thermodynamic properties and shadow images of a topological phantom AdS black hole within the framework of <span><math><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity, utilizing the Barrow entropy formulation. We introduce a detailed study of the Joule-Thomson expansion, calculating the Joule-Thomson coefficient and mapping isenthalpic and inversion curves to characterize heating/cooling phases. Our findings reveal that the Barrow parameter plays a crucial role in altering the shape and position of these thermodynamic curves, thereby significantly impacting the black hole's thermal behavior. Moreover, we demonstrate that variations in <span><math><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity parameters such as the scalar curvature <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the type of field interaction <em>η</em>, and <span><math><msub><mrow><mi>f</mi></mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span>—lead to substantial modifications in the shadow of the black hole. These changes in shadow size and shape underscore the direct influence of the underlying gravitational theory on the interaction between black holes and light, offering new perspectives on how black holes are perceived by distant observers. Additionally, we calculate the total observed intensities from the emission function of the accretion disk, with graphical analysis showing that the <span><math><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity parameters markedly affect the intensity distribution around the black hole. This has significant implications for the accretion disk's emission properties and the resulting shadow image, highlighting the critical impact of modified gravity theories on observable black hole phenomena. This work offers fresh insights and underscores the importance of considering modified gravity frameworks when studying black hole thermodynamics and optical properties.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 356-370"},"PeriodicalIF":10.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-gravitational effects on Joule-Thomson expansion and black hole shadows in F(R) gravity with barrow entropy corrections\",\"authors\":\"Muhammad Yasir , Xia Tiecheng , Shahid Chaudhary , Abdulrahman Bin Jumah\",\"doi\":\"10.1016/j.jheap.2024.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a novel investigation into the thermodynamic properties and shadow images of a topological phantom AdS black hole within the framework of <span><math><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity, utilizing the Barrow entropy formulation. We introduce a detailed study of the Joule-Thomson expansion, calculating the Joule-Thomson coefficient and mapping isenthalpic and inversion curves to characterize heating/cooling phases. Our findings reveal that the Barrow parameter plays a crucial role in altering the shape and position of these thermodynamic curves, thereby significantly impacting the black hole's thermal behavior. Moreover, we demonstrate that variations in <span><math><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity parameters such as the scalar curvature <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the type of field interaction <em>η</em>, and <span><math><msub><mrow><mi>f</mi></mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span>—lead to substantial modifications in the shadow of the black hole. These changes in shadow size and shape underscore the direct influence of the underlying gravitational theory on the interaction between black holes and light, offering new perspectives on how black holes are perceived by distant observers. Additionally, we calculate the total observed intensities from the emission function of the accretion disk, with graphical analysis showing that the <span><math><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity parameters markedly affect the intensity distribution around the black hole. This has significant implications for the accretion disk's emission properties and the resulting shadow image, highlighting the critical impact of modified gravity theories on observable black hole phenomena. This work offers fresh insights and underscores the importance of considering modified gravity frameworks when studying black hole thermodynamics and optical properties.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"44 \",\"pages\":\"Pages 356-370\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404824001022\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824001022","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Quantum-gravitational effects on Joule-Thomson expansion and black hole shadows in F(R) gravity with barrow entropy corrections
We present a novel investigation into the thermodynamic properties and shadow images of a topological phantom AdS black hole within the framework of gravity, utilizing the Barrow entropy formulation. We introduce a detailed study of the Joule-Thomson expansion, calculating the Joule-Thomson coefficient and mapping isenthalpic and inversion curves to characterize heating/cooling phases. Our findings reveal that the Barrow parameter plays a crucial role in altering the shape and position of these thermodynamic curves, thereby significantly impacting the black hole's thermal behavior. Moreover, we demonstrate that variations in gravity parameters such as the scalar curvature , the type of field interaction η, and —lead to substantial modifications in the shadow of the black hole. These changes in shadow size and shape underscore the direct influence of the underlying gravitational theory on the interaction between black holes and light, offering new perspectives on how black holes are perceived by distant observers. Additionally, we calculate the total observed intensities from the emission function of the accretion disk, with graphical analysis showing that the gravity parameters markedly affect the intensity distribution around the black hole. This has significant implications for the accretion disk's emission properties and the resulting shadow image, highlighting the critical impact of modified gravity theories on observable black hole phenomena. This work offers fresh insights and underscores the importance of considering modified gravity frameworks when studying black hole thermodynamics and optical properties.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.