Lim Yeou Jiann , Sharena Mohamad isa , Noraihan Afiqah Rawi , Sharidan Shafie , Ahmad Qushairi Mohamad , Dennis Ling Chaun Ching , Nur Azlina Mat Noor
{"title":"三元正切双曲纳米流体在非达西多孔介质中的强化传热","authors":"Lim Yeou Jiann , Sharena Mohamad isa , Noraihan Afiqah Rawi , Sharidan Shafie , Ahmad Qushairi Mohamad , Dennis Ling Chaun Ching , Nur Azlina Mat Noor","doi":"10.1016/j.jocs.2024.102462","DOIUrl":null,"url":null,"abstract":"<div><div>The effectiveness of heat transfer fluids (HTFs) is pivotal in maximizing the efficiency and longevity of various devices, from small-scale applications to large industrial systems. A comprehensive understanding of the properties of innovative ternary heat transfer nanofluids (TNFs) is essential, particularly when utilized over a Darcy-Forchheimer porous medium. This study explores tangent hyperbolic thermal nanofluids (TNFs) made up of nanoparticles such as graphene, zirconium oxide and magnesium oxide and, suspended in an ethylene glycol base fluid, within a non-Darcy porous medium. Similarity variables are used to streamline the mathematical representation of fluid flow and heat transmission in TNFs. Then, semi-analytical solutions to the reduced governing equations are obtained using the homotopy analysis method. The influence of tri-nanoparticles, porosity, and the Forchheimer parameter on skin friction, fluid flow dynamics, heat transfer rates, and the Nusselt number is investigated. The Forchheimer parameter lowers the Nusselt number by 27.80 % for TNFs, 21.27 % for the hybrid nanofluid, and 21.08 % for the nanofluid. As a result, the temperature within TNFs is more evenly distributed. TNFs can transfer more heat by raising the medium’s porosity and the tri-nanoparticle volume fraction. These results unveil groundbreaking insights into enhancing the efficiency of heat transfer fluids. The introduction of a porous medium emerges as an alternate strategy to boost the performance of TNFs.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"83 ","pages":"Article 102462"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced heat transfer in ternary tangent hyperbolic nanofluids through non-darcy porous media\",\"authors\":\"Lim Yeou Jiann , Sharena Mohamad isa , Noraihan Afiqah Rawi , Sharidan Shafie , Ahmad Qushairi Mohamad , Dennis Ling Chaun Ching , Nur Azlina Mat Noor\",\"doi\":\"10.1016/j.jocs.2024.102462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effectiveness of heat transfer fluids (HTFs) is pivotal in maximizing the efficiency and longevity of various devices, from small-scale applications to large industrial systems. A comprehensive understanding of the properties of innovative ternary heat transfer nanofluids (TNFs) is essential, particularly when utilized over a Darcy-Forchheimer porous medium. This study explores tangent hyperbolic thermal nanofluids (TNFs) made up of nanoparticles such as graphene, zirconium oxide and magnesium oxide and, suspended in an ethylene glycol base fluid, within a non-Darcy porous medium. Similarity variables are used to streamline the mathematical representation of fluid flow and heat transmission in TNFs. Then, semi-analytical solutions to the reduced governing equations are obtained using the homotopy analysis method. The influence of tri-nanoparticles, porosity, and the Forchheimer parameter on skin friction, fluid flow dynamics, heat transfer rates, and the Nusselt number is investigated. The Forchheimer parameter lowers the Nusselt number by 27.80 % for TNFs, 21.27 % for the hybrid nanofluid, and 21.08 % for the nanofluid. As a result, the temperature within TNFs is more evenly distributed. TNFs can transfer more heat by raising the medium’s porosity and the tri-nanoparticle volume fraction. These results unveil groundbreaking insights into enhancing the efficiency of heat transfer fluids. The introduction of a porous medium emerges as an alternate strategy to boost the performance of TNFs.</div></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"83 \",\"pages\":\"Article 102462\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750324002552\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002552","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Enhanced heat transfer in ternary tangent hyperbolic nanofluids through non-darcy porous media
The effectiveness of heat transfer fluids (HTFs) is pivotal in maximizing the efficiency and longevity of various devices, from small-scale applications to large industrial systems. A comprehensive understanding of the properties of innovative ternary heat transfer nanofluids (TNFs) is essential, particularly when utilized over a Darcy-Forchheimer porous medium. This study explores tangent hyperbolic thermal nanofluids (TNFs) made up of nanoparticles such as graphene, zirconium oxide and magnesium oxide and, suspended in an ethylene glycol base fluid, within a non-Darcy porous medium. Similarity variables are used to streamline the mathematical representation of fluid flow and heat transmission in TNFs. Then, semi-analytical solutions to the reduced governing equations are obtained using the homotopy analysis method. The influence of tri-nanoparticles, porosity, and the Forchheimer parameter on skin friction, fluid flow dynamics, heat transfer rates, and the Nusselt number is investigated. The Forchheimer parameter lowers the Nusselt number by 27.80 % for TNFs, 21.27 % for the hybrid nanofluid, and 21.08 % for the nanofluid. As a result, the temperature within TNFs is more evenly distributed. TNFs can transfer more heat by raising the medium’s porosity and the tri-nanoparticle volume fraction. These results unveil groundbreaking insights into enhancing the efficiency of heat transfer fluids. The introduction of a porous medium emerges as an alternate strategy to boost the performance of TNFs.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).