以 b 为底的欧式除法 d

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jean-Éric Pin
{"title":"以 b 为底的欧式除法 d","authors":"Jean-Éric Pin","doi":"10.1016/j.tcs.2024.114937","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>b</mi><mo>⩾</mo><mn>2</mn></math></span> be an integer. For each positive integer <em>d</em>, let <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> be the Euclidean division by <em>d</em> in base <em>b</em>, that is, the function which associates to a word <em>u</em> in <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>b</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, representing an integer <em>n</em> in base <em>b</em>, the unique word of the same length as <em>u</em> representing the quotient of the division of <em>n</em> by <em>d</em>. We describe the pure sequential transducer realizing this function and analyze the algebraic structure of its syntactic monoid. We compute its size, describe its Green's relations and its minimum ideal. As a consequence, we show that it is a group if and only if <em>d</em> and <em>b</em> are coprime numbers, it is a <em>p</em>-group if and only if <em>d</em> is a power of <em>p</em> and <em>b</em> is congruent to 1 modulo <em>p</em> and it is an aperiodic monoid if and only if <em>d</em> divides some power of <em>b</em>. The uniform continuity of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> for the pro-group metric was studied by Reutenauer and Schützenberger in 1995. We launch a similar study for the uniform continuity of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> with respect to the pro-<em>p</em> metric, where <em>p</em> is a prime number.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1024 ","pages":"Article 114937"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euclidean division by d in base b\",\"authors\":\"Jean-Éric Pin\",\"doi\":\"10.1016/j.tcs.2024.114937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>b</mi><mo>⩾</mo><mn>2</mn></math></span> be an integer. For each positive integer <em>d</em>, let <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> be the Euclidean division by <em>d</em> in base <em>b</em>, that is, the function which associates to a word <em>u</em> in <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>b</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, representing an integer <em>n</em> in base <em>b</em>, the unique word of the same length as <em>u</em> representing the quotient of the division of <em>n</em> by <em>d</em>. We describe the pure sequential transducer realizing this function and analyze the algebraic structure of its syntactic monoid. We compute its size, describe its Green's relations and its minimum ideal. As a consequence, we show that it is a group if and only if <em>d</em> and <em>b</em> are coprime numbers, it is a <em>p</em>-group if and only if <em>d</em> is a power of <em>p</em> and <em>b</em> is congruent to 1 modulo <em>p</em> and it is an aperiodic monoid if and only if <em>d</em> divides some power of <em>b</em>. The uniform continuity of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> for the pro-group metric was studied by Reutenauer and Schützenberger in 1995. We launch a similar study for the uniform continuity of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> with respect to the pro-<em>p</em> metric, where <em>p</em> is a prime number.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1024 \",\"pages\":\"Article 114937\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005541\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005541","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

设 b⩾2 为整数。对于每个正整数 d,设 Ed,b 是以 b 为底的欧几里得除法,即把代表以 b 为底的整数 n 的 {0,...,b-1}⁎ 中的单词 u 与代表 n 除以 d 的商的与 u 长度相同的唯一单词关联起来的函数。我们计算了它的大小,描述了它的格林关系和最小理想数。因此,我们证明了当且仅当 d 和 b 是同素数时,它是一个群;当且仅当 d 是 p 的幂和 b 同调于 1 modulo p 时,它是一个 p 群;当且仅当 d 除以 b 的某个幂时,它是一个非周期性单元。我们对 Ed,b 关于亲群公设(其中 p 是素数)的均匀连续性进行了类似的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean division by d in base b
Let b2 be an integer. For each positive integer d, let Ed,b be the Euclidean division by d in base b, that is, the function which associates to a word u in {0,,b1}, representing an integer n in base b, the unique word of the same length as u representing the quotient of the division of n by d. We describe the pure sequential transducer realizing this function and analyze the algebraic structure of its syntactic monoid. We compute its size, describe its Green's relations and its minimum ideal. As a consequence, we show that it is a group if and only if d and b are coprime numbers, it is a p-group if and only if d is a power of p and b is congruent to 1 modulo p and it is an aperiodic monoid if and only if d divides some power of b. The uniform continuity of Ed,b for the pro-group metric was studied by Reutenauer and Schützenberger in 1995. We launch a similar study for the uniform continuity of Ed,b with respect to the pro-p metric, where p is a prime number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信