超声波在软生物组织中传播的伪谱时域法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Carlos Spa, Josep de la Puente
{"title":"超声波在软生物组织中传播的伪谱时域法","authors":"Carlos Spa,&nbsp;Josep de la Puente","doi":"10.1016/j.jcp.2024.113527","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a Pseudo-Spectral Time-Domain (PSTD) method to simulate acoustic wave propagation in soft biological tissues, incorporating frequency-dependent power-law absorption and dispersion. A comprehensive Von-Neumann stability analysis highlights the influence of material parameters, time step, and spatial discretization on numerical stability. Validation is conducted through one-dimensional tests comparing numerical results with theoretical predictions for dispersion and attenuation, and two-dimensional simulations benchmarked against analytical Green's functions. Additionally, forward simulations on a breast phantom model using typical ultrasound parameters demonstrate the method's accuracy in modeling wave attenuation and dispersion. This PSTD method provides a reliable and efficient computational tool for advanced biomedical ultrasonics research.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pseudo-spectral time-domain method for ultrasound wave propagation in soft biological tissue\",\"authors\":\"Carlos Spa,&nbsp;Josep de la Puente\",\"doi\":\"10.1016/j.jcp.2024.113527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a Pseudo-Spectral Time-Domain (PSTD) method to simulate acoustic wave propagation in soft biological tissues, incorporating frequency-dependent power-law absorption and dispersion. A comprehensive Von-Neumann stability analysis highlights the influence of material parameters, time step, and spatial discretization on numerical stability. Validation is conducted through one-dimensional tests comparing numerical results with theoretical predictions for dispersion and attenuation, and two-dimensional simulations benchmarked against analytical Green's functions. Additionally, forward simulations on a breast phantom model using typical ultrasound parameters demonstrate the method's accuracy in modeling wave attenuation and dispersion. This PSTD method provides a reliable and efficient computational tool for advanced biomedical ultrasonics research.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007757\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007757","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种伪谱时域(PSTD)方法,用于模拟声波在软生物组织中的传播,其中包含频率相关的幂律吸收和弥散。全面的 Von-Neumann 稳定性分析强调了材料参数、时间步长和空间离散度对数值稳定性的影响。通过将数值结果与理论预测的分散和衰减进行比较的一维测试,以及以分析格林函数为基准的二维模拟,进行了验证。此外,使用典型超声参数对乳腺模型进行的正向模拟证明了该方法在模拟波衰减和频散方面的准确性。这种 PSTD 方法为先进的生物医学超声研究提供了可靠、高效的计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A pseudo-spectral time-domain method for ultrasound wave propagation in soft biological tissue
We introduce a Pseudo-Spectral Time-Domain (PSTD) method to simulate acoustic wave propagation in soft biological tissues, incorporating frequency-dependent power-law absorption and dispersion. A comprehensive Von-Neumann stability analysis highlights the influence of material parameters, time step, and spatial discretization on numerical stability. Validation is conducted through one-dimensional tests comparing numerical results with theoretical predictions for dispersion and attenuation, and two-dimensional simulations benchmarked against analytical Green's functions. Additionally, forward simulations on a breast phantom model using typical ultrasound parameters demonstrate the method's accuracy in modeling wave attenuation and dispersion. This PSTD method provides a reliable and efficient computational tool for advanced biomedical ultrasonics research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信