{"title":"域大小为 3 和 4 的受限整体二分法","authors":"Yin Liu, Austen Z. Fan, Jin-Yi Cai","doi":"10.1016/j.tcs.2024.114931","DOIUrl":null,"url":null,"abstract":"<div><div><span><math><msup><mrow><mi>Holant</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>f</mi><mo>)</mo></math></span> denotes a class of counting problems specified by a constraint function <em>f</em>. We prove complexity dichotomy theorems for <span><math><msup><mrow><mi>Holant</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>f</mi><mo>)</mo></math></span> in two settings: (1) <em>f</em> is any symmetric arity-3 real-valued function on input of domain size 3. (2) <em>f</em> is any symmetric arity-3 <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-valued function on input of domain size 4.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1023 ","pages":"Article 114931"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricted holant dichotomy on domain sizes 3 and 4\",\"authors\":\"Yin Liu, Austen Z. Fan, Jin-Yi Cai\",\"doi\":\"10.1016/j.tcs.2024.114931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><math><msup><mrow><mi>Holant</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>f</mi><mo>)</mo></math></span> denotes a class of counting problems specified by a constraint function <em>f</em>. We prove complexity dichotomy theorems for <span><math><msup><mrow><mi>Holant</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>f</mi><mo>)</mo></math></span> in two settings: (1) <em>f</em> is any symmetric arity-3 real-valued function on input of domain size 3. (2) <em>f</em> is any symmetric arity-3 <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-valued function on input of domain size 4.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1023 \",\"pages\":\"Article 114931\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005486\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005486","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
Holant⁎(f) 表示一类由约束函数 f 指定的计数问题。我们将在两种情况下证明 Holant⁎(f) 的复杂性二分定理:(1) f 是域大小为 3 的输入上的任意对称算术值-3 实值函数;(2) f 是域大小为 4 的输入上的任意对称算术值-3 {0,1} 值函数。
Restricted holant dichotomy on domain sizes 3 and 4
denotes a class of counting problems specified by a constraint function f. We prove complexity dichotomy theorems for in two settings: (1) f is any symmetric arity-3 real-valued function on input of domain size 3. (2) f is any symmetric arity-3 -valued function on input of domain size 4.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.