使用参数相关微分动态编程的两阶段动态实时优化框架

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hyein Jung , Jong Woo Kim , Jong Min Lee
{"title":"使用参数相关微分动态编程的两阶段动态实时优化框架","authors":"Hyein Jung ,&nbsp;Jong Woo Kim ,&nbsp;Jong Min Lee","doi":"10.1016/j.compchemeng.2024.108896","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of chemical process control includes proactive adjustment of the operation to make the most profit out of it. Within this context, real-time optimization (RTO) is proposed and extended to dynamic RTO (DRTO) in the hierarchical control structure, usually having model predictive control (MPC) below. However, online tractability confined the model complexity of RTO and MPC, which results in model inconsistency and, even, incompatible solutions. Here we use parameter-dependent differential dynamic programming (PDDP) to incorporate the closed-loop behavior of the controller in an RTO layer to reduce problem complexity and online computation time. The adaptive control performance of PDDP and the efficacy of closed-loop DRTO formulation with PDDP is demonstrated with the reaction–storage–separation network system control. Consequently, PDDP provides a useful parameterization method to express closed-loop system dynamics, which enables fast feedback control and integrated plant optimization.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108896"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-stage dynamic real-time optimization framework using parameter-dependent differential dynamic programming\",\"authors\":\"Hyein Jung ,&nbsp;Jong Woo Kim ,&nbsp;Jong Min Lee\",\"doi\":\"10.1016/j.compchemeng.2024.108896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purpose of chemical process control includes proactive adjustment of the operation to make the most profit out of it. Within this context, real-time optimization (RTO) is proposed and extended to dynamic RTO (DRTO) in the hierarchical control structure, usually having model predictive control (MPC) below. However, online tractability confined the model complexity of RTO and MPC, which results in model inconsistency and, even, incompatible solutions. Here we use parameter-dependent differential dynamic programming (PDDP) to incorporate the closed-loop behavior of the controller in an RTO layer to reduce problem complexity and online computation time. The adaptive control performance of PDDP and the efficacy of closed-loop DRTO formulation with PDDP is demonstrated with the reaction–storage–separation network system control. Consequently, PDDP provides a useful parameterization method to express closed-loop system dynamics, which enables fast feedback control and integrated plant optimization.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108896\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003144\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003144","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

化工过程控制的目的包括主动调整操作以获得最大利润。在此背景下,人们提出了实时优化(RTO),并在分层控制结构中将其扩展为动态 RTO(DRTO),通常下面还有模型预测控制(MPC)。然而,在线可控性限制了 RTO 和 MPC 的模型复杂性,导致模型不一致,甚至出现不兼容的解决方案。在此,我们使用参数相关微分动态编程(PDDP)将控制器的闭环行为纳入 RTO 层,以降低问题复杂度和减少在线计算时间。通过反应-存储-分离网络系统控制,证明了 PDDP 的自适应控制性能和使用 PDDP 的闭环 DRTO 方案的有效性。因此,PDDP 为表达闭环系统动力学提供了一种有用的参数化方法,可实现快速反馈控制和综合工厂优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-stage dynamic real-time optimization framework using parameter-dependent differential dynamic programming
The purpose of chemical process control includes proactive adjustment of the operation to make the most profit out of it. Within this context, real-time optimization (RTO) is proposed and extended to dynamic RTO (DRTO) in the hierarchical control structure, usually having model predictive control (MPC) below. However, online tractability confined the model complexity of RTO and MPC, which results in model inconsistency and, even, incompatible solutions. Here we use parameter-dependent differential dynamic programming (PDDP) to incorporate the closed-loop behavior of the controller in an RTO layer to reduce problem complexity and online computation time. The adaptive control performance of PDDP and the efficacy of closed-loop DRTO formulation with PDDP is demonstrated with the reaction–storage–separation network system control. Consequently, PDDP provides a useful parameterization method to express closed-loop system dynamics, which enables fast feedback control and integrated plant optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信