使用可靠性分析和贝叶斯方法评估钢筋混凝土梁的钢筋比例限制

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Oscar D. Hurtado, Andrés Álvarez, Albert R. Ortiz, Gilberto Areiza, Peter Thomson
{"title":"使用可靠性分析和贝叶斯方法评估钢筋混凝土梁的钢筋比例限制","authors":"Oscar D. Hurtado,&nbsp;Andrés Álvarez,&nbsp;Albert R. Ortiz,&nbsp;Gilberto Areiza,&nbsp;Peter Thomson","doi":"10.1016/j.istruc.2024.107611","DOIUrl":null,"url":null,"abstract":"<div><div>Structural codes worldwide typically limit the steel reinforcement ratio in elements to mitigate the risk of fragile failure. Notably, standard codes impose such limits; however, constant improvements in material science induce the need for standard codes to be reviewed periodically. This reassessment is important due to advancements in the nominal values of key parameters in structural design and construction, and the uncertainty reduction in material reliability attributed to advancements in manufacturing processes and quality control. This paper addresses the need for a thorough reassessment of the reliability level of steel reinforcement ratio limits in beam elements designed under the provisions of the ACI 318-19 code, given the evolving material properties. Principles of mechanics are used to get an expression of steel reinforcement ratio (<span><math><mi>ρ</mi></math></span>) limits in terms of the uncertainty in material properties such as concrete and steel. Also, experimental data from multiple resources and available literature are incorporated for model validation. Specifically, compressive strength of concrete (<span><math><msubsup><mrow><mi>f</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span>), yield stress of steel (<span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span>), modulus of rupture (<span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>), ultimate deformation of concrete (<span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi><mi>u</mi></mrow></msub></math></span>), and the ratio of the transformed area of the concrete section to its gross area (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>) are treated as random variables. The investigation focuses on the compressive strength of concrete values of 28, 35, 42, and 89 MPa alongside with grade 60 and high-strength structural steel. The probability of exceedance of <span><math><mi>ρ</mi></math></span> limits is calculated through Bayesian inference programming and Monte Carlo sampling. The results indicate that the minimum steel ratio (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></math></span>) limit given by ACI 318-19 is considerably higher than the obtained value by code. While the maximum steel ratio (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>) is reasonable, taking into account the balanced steel ratio (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>l</mi><mi>a</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span>) value, which gives us a maximum amount of steel that causes a ductile failure. Drawing insights from the results, novel limits may be formulated for these specific <span><math><msubsup><mrow><mi>f</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> values to achieve a reliable and balanced behavior in reinforced concrete members.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"70 ","pages":"Article 107611"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of steel ratio limits for reinforced concrete beams using reliability analysis and Bayesian methods\",\"authors\":\"Oscar D. Hurtado,&nbsp;Andrés Álvarez,&nbsp;Albert R. Ortiz,&nbsp;Gilberto Areiza,&nbsp;Peter Thomson\",\"doi\":\"10.1016/j.istruc.2024.107611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structural codes worldwide typically limit the steel reinforcement ratio in elements to mitigate the risk of fragile failure. Notably, standard codes impose such limits; however, constant improvements in material science induce the need for standard codes to be reviewed periodically. This reassessment is important due to advancements in the nominal values of key parameters in structural design and construction, and the uncertainty reduction in material reliability attributed to advancements in manufacturing processes and quality control. This paper addresses the need for a thorough reassessment of the reliability level of steel reinforcement ratio limits in beam elements designed under the provisions of the ACI 318-19 code, given the evolving material properties. Principles of mechanics are used to get an expression of steel reinforcement ratio (<span><math><mi>ρ</mi></math></span>) limits in terms of the uncertainty in material properties such as concrete and steel. Also, experimental data from multiple resources and available literature are incorporated for model validation. Specifically, compressive strength of concrete (<span><math><msubsup><mrow><mi>f</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span>), yield stress of steel (<span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span>), modulus of rupture (<span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>), ultimate deformation of concrete (<span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>c</mi><mi>u</mi></mrow></msub></math></span>), and the ratio of the transformed area of the concrete section to its gross area (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>) are treated as random variables. The investigation focuses on the compressive strength of concrete values of 28, 35, 42, and 89 MPa alongside with grade 60 and high-strength structural steel. The probability of exceedance of <span><math><mi>ρ</mi></math></span> limits is calculated through Bayesian inference programming and Monte Carlo sampling. The results indicate that the minimum steel ratio (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></math></span>) limit given by ACI 318-19 is considerably higher than the obtained value by code. While the maximum steel ratio (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>) is reasonable, taking into account the balanced steel ratio (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>l</mi><mi>a</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span>) value, which gives us a maximum amount of steel that causes a ductile failure. Drawing insights from the results, novel limits may be formulated for these specific <span><math><msubsup><mrow><mi>f</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> values to achieve a reliable and balanced behavior in reinforced concrete members.</div></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":\"70 \",\"pages\":\"Article 107611\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012424017648\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424017648","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

世界范围内的结构规范通常会限制构件的钢筋比例,以降低脆性破坏的风险。值得注意的是,标准规范规定了这种限制;然而,材料科学的不断进步促使标准规范需要定期审查。由于结构设计和施工中关键参数标称值的进步,以及制造工艺和质量控制的进步导致材料可靠性的不确定性降低,这种重新评估非常重要。本文探讨了在材料性能不断变化的情况下,对根据 ACI 318-19 规范设计的梁构件中钢筋比例限制的可靠性水平进行全面重新评估的必要性。我们利用力学原理,从混凝土和钢材等材料属性的不确定性角度,得到了钢筋配筋率 (ρ)限值的表达式。此外,还纳入了来自多种资源和现有文献的实验数据,以便对模型进行验证。具体来说,混凝土抗压强度 (fc′)、钢材屈服应力 (fy)、断裂模量 (fr)、混凝土极限变形 (ɛcu),以及混凝土截面转换面积与总面积之比 (β1)均被视为随机变量。研究重点是 28、35、42 和 89 兆帕的混凝土抗压强度值以及 60 级和高强度结构钢。通过贝叶斯推理编程和蒙特卡洛抽样计算了超过 ρ 限制的概率。结果表明,ACI 318-19 规定的最小钢筋比 (ρmin)限值远高于规范得出的值。而考虑到平衡钢筋比 (ρbalanced),最大钢筋比 (ρmax)是合理的,它给出了导致延性破坏的最大钢筋量。根据这些结果,我们可以为这些特定的 fc′ 值制定新的限值,以实现钢筋混凝土构件可靠而平衡的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of steel ratio limits for reinforced concrete beams using reliability analysis and Bayesian methods
Structural codes worldwide typically limit the steel reinforcement ratio in elements to mitigate the risk of fragile failure. Notably, standard codes impose such limits; however, constant improvements in material science induce the need for standard codes to be reviewed periodically. This reassessment is important due to advancements in the nominal values of key parameters in structural design and construction, and the uncertainty reduction in material reliability attributed to advancements in manufacturing processes and quality control. This paper addresses the need for a thorough reassessment of the reliability level of steel reinforcement ratio limits in beam elements designed under the provisions of the ACI 318-19 code, given the evolving material properties. Principles of mechanics are used to get an expression of steel reinforcement ratio (ρ) limits in terms of the uncertainty in material properties such as concrete and steel. Also, experimental data from multiple resources and available literature are incorporated for model validation. Specifically, compressive strength of concrete (fc), yield stress of steel (fy), modulus of rupture (fr), ultimate deformation of concrete (ɛcu), and the ratio of the transformed area of the concrete section to its gross area (β1) are treated as random variables. The investigation focuses on the compressive strength of concrete values of 28, 35, 42, and 89 MPa alongside with grade 60 and high-strength structural steel. The probability of exceedance of ρ limits is calculated through Bayesian inference programming and Monte Carlo sampling. The results indicate that the minimum steel ratio (ρmin) limit given by ACI 318-19 is considerably higher than the obtained value by code. While the maximum steel ratio (ρmax) is reasonable, taking into account the balanced steel ratio (ρbalanced) value, which gives us a maximum amount of steel that causes a ductile failure. Drawing insights from the results, novel limits may be formulated for these specific fc values to achieve a reliable and balanced behavior in reinforced concrete members.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信