Yang Wang , Ao Wang , Shijia Song , Fan Xie , Chang Ma , Jiawei Xu , Lijun Zhao
{"title":"FHLight:利用改进的损失函数估算室内场景光照度的新方法","authors":"Yang Wang , Ao Wang , Shijia Song , Fan Xie , Chang Ma , Jiawei Xu , Lijun Zhao","doi":"10.1016/j.imavis.2024.105299","DOIUrl":null,"url":null,"abstract":"<div><div>In augmented reality tasks, especially in indoor scenes, achieving illumination consistency between virtual objects and real environments is a critical challenge. Currently, mainstream methods are illumination parameters regression and illumination map generation. Among these two categories of methods, few works can effectively recover both high-frequency and low-frequency illumination information within indoor scenes. In this work, we argue that effective restoration of low-frequency illumination information forms the foundation for capturing high-frequency illumination details. In this way, we propose a novel illumination estimation method called FHLight. Technically, we use a low-frequency spherical harmonic irradiance map (LFSHIM) restored by the low-frequency illumination regression network (LFIRN) as prior information to guide the high-frequency illumination generator (HFIG) to restore the illumination map. Furthermore, we suggest an improved loss function to optimize the network training procedure, ensuring that the model accurately restores both low-frequency and high-frequency illumination information within the scene. We compare FHLight with several competitive methods, and the results demonstrate significant improvements in metrics such as RMSE, si-RMSE, and Angular error. In addition, visual experiments further confirm that FHLight is capable of generating scene illumination maps with genuine frequencies, effectively resolving the illumination consistency issue between virtual objects and real scenes. The code is available at <span><span>https://github.com/WA-tyro/FHLight.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"152 ","pages":"Article 105299"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FHLight: A novel method of indoor scene illumination estimation using improved loss function\",\"authors\":\"Yang Wang , Ao Wang , Shijia Song , Fan Xie , Chang Ma , Jiawei Xu , Lijun Zhao\",\"doi\":\"10.1016/j.imavis.2024.105299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In augmented reality tasks, especially in indoor scenes, achieving illumination consistency between virtual objects and real environments is a critical challenge. Currently, mainstream methods are illumination parameters regression and illumination map generation. Among these two categories of methods, few works can effectively recover both high-frequency and low-frequency illumination information within indoor scenes. In this work, we argue that effective restoration of low-frequency illumination information forms the foundation for capturing high-frequency illumination details. In this way, we propose a novel illumination estimation method called FHLight. Technically, we use a low-frequency spherical harmonic irradiance map (LFSHIM) restored by the low-frequency illumination regression network (LFIRN) as prior information to guide the high-frequency illumination generator (HFIG) to restore the illumination map. Furthermore, we suggest an improved loss function to optimize the network training procedure, ensuring that the model accurately restores both low-frequency and high-frequency illumination information within the scene. We compare FHLight with several competitive methods, and the results demonstrate significant improvements in metrics such as RMSE, si-RMSE, and Angular error. In addition, visual experiments further confirm that FHLight is capable of generating scene illumination maps with genuine frequencies, effectively resolving the illumination consistency issue between virtual objects and real scenes. The code is available at <span><span>https://github.com/WA-tyro/FHLight.git</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"152 \",\"pages\":\"Article 105299\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624004049\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004049","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
FHLight: A novel method of indoor scene illumination estimation using improved loss function
In augmented reality tasks, especially in indoor scenes, achieving illumination consistency between virtual objects and real environments is a critical challenge. Currently, mainstream methods are illumination parameters regression and illumination map generation. Among these two categories of methods, few works can effectively recover both high-frequency and low-frequency illumination information within indoor scenes. In this work, we argue that effective restoration of low-frequency illumination information forms the foundation for capturing high-frequency illumination details. In this way, we propose a novel illumination estimation method called FHLight. Technically, we use a low-frequency spherical harmonic irradiance map (LFSHIM) restored by the low-frequency illumination regression network (LFIRN) as prior information to guide the high-frequency illumination generator (HFIG) to restore the illumination map. Furthermore, we suggest an improved loss function to optimize the network training procedure, ensuring that the model accurately restores both low-frequency and high-frequency illumination information within the scene. We compare FHLight with several competitive methods, and the results demonstrate significant improvements in metrics such as RMSE, si-RMSE, and Angular error. In addition, visual experiments further confirm that FHLight is capable of generating scene illumination maps with genuine frequencies, effectively resolving the illumination consistency issue between virtual objects and real scenes. The code is available at https://github.com/WA-tyro/FHLight.git.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.