Shouwen Shi , Wei Huang , Gaoyuan Xie , Weibin Li , Longyi Yang , Qiang Lin , Gang Chen , Xu Chen
{"title":"对液态铅铋环境中改性 9Cr-1Mo 钢疲劳寿命的新认识以及考虑环境因素的寿命预测","authors":"Shouwen Shi , Wei Huang , Gaoyuan Xie , Weibin Li , Longyi Yang , Qiang Lin , Gang Chen , Xu Chen","doi":"10.1016/j.nucengdes.2024.113648","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue life of modified 9Cr-1Mo steel in liquid lead bismuth eutectic (LBE) at different strain amplitudes, temperatures and oxygen concentrations are analyzed. A liquid metal embrittlement (LME) factor of plastic strain is proposed to account for the reduced fatigue life induced by LME effect, which is also found to correlate well with tensile elongation in LBE. In low oxygen content LBE, the LME effect is influenced by temperature instead of plastic strain amplitude. While in high oxygen content LBE, the plastic LME factor is found to decrease exponentially with increasing plastic strain amplitude. Based on these findings, a fatigue life prediction model is proposed taking into account of different environmental influencing factors. In total, 86 data points are used with 70 % data points for independent validation only. Regardless of the discrepancy in fatigue life from different sources, good prediction results are still achieved with 98 % data points fall within ± 3 error band and 75 % data points fall within ± 2 error band.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"429 ","pages":"Article 113648"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insight into fatigue life of modified 9Cr-1Mo steel in liquid lead–bismuth environment and life prediction considering environmental factors\",\"authors\":\"Shouwen Shi , Wei Huang , Gaoyuan Xie , Weibin Li , Longyi Yang , Qiang Lin , Gang Chen , Xu Chen\",\"doi\":\"10.1016/j.nucengdes.2024.113648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fatigue life of modified 9Cr-1Mo steel in liquid lead bismuth eutectic (LBE) at different strain amplitudes, temperatures and oxygen concentrations are analyzed. A liquid metal embrittlement (LME) factor of plastic strain is proposed to account for the reduced fatigue life induced by LME effect, which is also found to correlate well with tensile elongation in LBE. In low oxygen content LBE, the LME effect is influenced by temperature instead of plastic strain amplitude. While in high oxygen content LBE, the plastic LME factor is found to decrease exponentially with increasing plastic strain amplitude. Based on these findings, a fatigue life prediction model is proposed taking into account of different environmental influencing factors. In total, 86 data points are used with 70 % data points for independent validation only. Regardless of the discrepancy in fatigue life from different sources, good prediction results are still achieved with 98 % data points fall within ± 3 error band and 75 % data points fall within ± 2 error band.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"429 \",\"pages\":\"Article 113648\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007489\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007489","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
New insight into fatigue life of modified 9Cr-1Mo steel in liquid lead–bismuth environment and life prediction considering environmental factors
The fatigue life of modified 9Cr-1Mo steel in liquid lead bismuth eutectic (LBE) at different strain amplitudes, temperatures and oxygen concentrations are analyzed. A liquid metal embrittlement (LME) factor of plastic strain is proposed to account for the reduced fatigue life induced by LME effect, which is also found to correlate well with tensile elongation in LBE. In low oxygen content LBE, the LME effect is influenced by temperature instead of plastic strain amplitude. While in high oxygen content LBE, the plastic LME factor is found to decrease exponentially with increasing plastic strain amplitude. Based on these findings, a fatigue life prediction model is proposed taking into account of different environmental influencing factors. In total, 86 data points are used with 70 % data points for independent validation only. Regardless of the discrepancy in fatigue life from different sources, good prediction results are still achieved with 98 % data points fall within ± 3 error band and 75 % data points fall within ± 2 error band.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.