{"title":"使用机器学习预测心脏骤停后的结果:系统回顾和荟萃分析","authors":"Amirhosein Zobeiri , Alireza Rezaee , Farshid Hajati , Ahmadreza Argha , Hamid Alinejad-Rokny","doi":"10.1016/j.ijmedinf.2024.105659","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Early and reliable prognostication in post-cardiac arrest patients remains challenging, with various factors linked to return of spontaneous circulation (ROSC), survival, and neurological results. Machine learning and deep learning models show promise in improving these predictions. This systematic review and <em>meta</em>-analysis evaluates how effective these approaches are in predicting clinical outcomes at different time points using structured data.</div></div><div><h3>Methods</h3><div>This study followed PRISMA guidelines, involving a comprehensive search across PubMed, Scopus, and Web of Science databases until March 2024. Studies aimed at predicting ROSC, survival (or mortality), and neurological outcomes after cardiac arrest through the application of machine learning or deep learning techniques with structured data were included. Data extraction followed the guidelines of the CHARMS checklist, and the bias risk was evaluated using PROBAST tool. Models reporting the AUC metric with 95 % confidence intervals were incorporated into the quantitative synthesis and <em>meta</em>-analysis.</div></div><div><h3>Results</h3><div>After extracting 2,753 initial records, 41 studies met the inclusion criteria, yielding 97 machine learning and 16 deep learning models. The pooled AUC for predicting favorable neurological outcomes (CPC 1 or 2) at hospital discharge was 0.871 (95 % CI: 0.813 – 0.928) for machine learning models and 0.877 (95 % CI: 0.831–0.924) across deep learning algorithms. For survival prediction, this value was found to be 0.837 (95 % CI: 0.757–0.916). Considerable heterogeneity and high risk of bias were observed, mainly attributable to inadequate management of missing data and the absence of calibration plots. Most studies focused on pre-hospital factors, with age, sex, and initial arrest rhythm being the most frequent features.</div></div><div><h3>Conclusion</h3><div>Predictive models utilizing AI-based approaches, including machine and deep learning models exhibit enhanced effectiveness compared to previous regression algorithms, but significant heterogeneity and high risk of bias limit their dependability. Evaluating state-of-the-art deep learning models tailored for tabular data and their clinical generalizability can enhance outcome prediction after cardiac arrest.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"193 ","pages":"Article 105659"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-Cardiac arrest outcome prediction using machine learning: A systematic review and meta-analysis\",\"authors\":\"Amirhosein Zobeiri , Alireza Rezaee , Farshid Hajati , Ahmadreza Argha , Hamid Alinejad-Rokny\",\"doi\":\"10.1016/j.ijmedinf.2024.105659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Early and reliable prognostication in post-cardiac arrest patients remains challenging, with various factors linked to return of spontaneous circulation (ROSC), survival, and neurological results. Machine learning and deep learning models show promise in improving these predictions. This systematic review and <em>meta</em>-analysis evaluates how effective these approaches are in predicting clinical outcomes at different time points using structured data.</div></div><div><h3>Methods</h3><div>This study followed PRISMA guidelines, involving a comprehensive search across PubMed, Scopus, and Web of Science databases until March 2024. Studies aimed at predicting ROSC, survival (or mortality), and neurological outcomes after cardiac arrest through the application of machine learning or deep learning techniques with structured data were included. Data extraction followed the guidelines of the CHARMS checklist, and the bias risk was evaluated using PROBAST tool. Models reporting the AUC metric with 95 % confidence intervals were incorporated into the quantitative synthesis and <em>meta</em>-analysis.</div></div><div><h3>Results</h3><div>After extracting 2,753 initial records, 41 studies met the inclusion criteria, yielding 97 machine learning and 16 deep learning models. The pooled AUC for predicting favorable neurological outcomes (CPC 1 or 2) at hospital discharge was 0.871 (95 % CI: 0.813 – 0.928) for machine learning models and 0.877 (95 % CI: 0.831–0.924) across deep learning algorithms. For survival prediction, this value was found to be 0.837 (95 % CI: 0.757–0.916). Considerable heterogeneity and high risk of bias were observed, mainly attributable to inadequate management of missing data and the absence of calibration plots. Most studies focused on pre-hospital factors, with age, sex, and initial arrest rhythm being the most frequent features.</div></div><div><h3>Conclusion</h3><div>Predictive models utilizing AI-based approaches, including machine and deep learning models exhibit enhanced effectiveness compared to previous regression algorithms, but significant heterogeneity and high risk of bias limit their dependability. Evaluating state-of-the-art deep learning models tailored for tabular data and their clinical generalizability can enhance outcome prediction after cardiac arrest.</div></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":\"193 \",\"pages\":\"Article 105659\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386505624003228\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505624003228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Post-Cardiac arrest outcome prediction using machine learning: A systematic review and meta-analysis
Background
Early and reliable prognostication in post-cardiac arrest patients remains challenging, with various factors linked to return of spontaneous circulation (ROSC), survival, and neurological results. Machine learning and deep learning models show promise in improving these predictions. This systematic review and meta-analysis evaluates how effective these approaches are in predicting clinical outcomes at different time points using structured data.
Methods
This study followed PRISMA guidelines, involving a comprehensive search across PubMed, Scopus, and Web of Science databases until March 2024. Studies aimed at predicting ROSC, survival (or mortality), and neurological outcomes after cardiac arrest through the application of machine learning or deep learning techniques with structured data were included. Data extraction followed the guidelines of the CHARMS checklist, and the bias risk was evaluated using PROBAST tool. Models reporting the AUC metric with 95 % confidence intervals were incorporated into the quantitative synthesis and meta-analysis.
Results
After extracting 2,753 initial records, 41 studies met the inclusion criteria, yielding 97 machine learning and 16 deep learning models. The pooled AUC for predicting favorable neurological outcomes (CPC 1 or 2) at hospital discharge was 0.871 (95 % CI: 0.813 – 0.928) for machine learning models and 0.877 (95 % CI: 0.831–0.924) across deep learning algorithms. For survival prediction, this value was found to be 0.837 (95 % CI: 0.757–0.916). Considerable heterogeneity and high risk of bias were observed, mainly attributable to inadequate management of missing data and the absence of calibration plots. Most studies focused on pre-hospital factors, with age, sex, and initial arrest rhythm being the most frequent features.
Conclusion
Predictive models utilizing AI-based approaches, including machine and deep learning models exhibit enhanced effectiveness compared to previous regression algorithms, but significant heterogeneity and high risk of bias limit their dependability. Evaluating state-of-the-art deep learning models tailored for tabular data and their clinical generalizability can enhance outcome prediction after cardiac arrest.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.