Mikel Brun, Fernando Cortés, María Jesús Elejabarrieta
{"title":"振动梁中涡流引起的能量耗散数值分析","authors":"Mikel Brun, Fernando Cortés, María Jesús Elejabarrieta","doi":"10.1016/j.jsv.2024.118787","DOIUrl":null,"url":null,"abstract":"<div><div>Vibration attenuation is a key aspect of mechanical engineering. One method to achieve this is through eddy currents, which can be generated in a vibrating system when a magnetic field is present, creating forces that oppose motion. This study examines a mechanical system consisting of a thin cantilever beam vibrating in a uniform and time-invariant magnetic field under steady-state conditions to understand the nature of energy dissipation and the relationship between motion, eddy currents, and damping forces. The calculation of eddy currents generally requires the use of complex numerical procedures. However, for systems with simple geometry, such as a cantilever beam, a recent numerical procedure based on the finite difference method, known for its simplicity in implementation, has been adapted and expanded to determine eddy currents under motional induction. A numerical application has been developed in which the vibration of a specific beam is characterised by its bending or torsional mode shapes, and the nature of the corresponding dissipative forces is analysed. Results indicate that the eddy currents are an effective means of dissipating energy at lower-order modes. Additionally, the direction of the applied magnetic field can induce coupling between bending and torsional vibrations.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"595 ","pages":"Article 118787"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of energy dissipation due to eddy currents in a vibrating beam\",\"authors\":\"Mikel Brun, Fernando Cortés, María Jesús Elejabarrieta\",\"doi\":\"10.1016/j.jsv.2024.118787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vibration attenuation is a key aspect of mechanical engineering. One method to achieve this is through eddy currents, which can be generated in a vibrating system when a magnetic field is present, creating forces that oppose motion. This study examines a mechanical system consisting of a thin cantilever beam vibrating in a uniform and time-invariant magnetic field under steady-state conditions to understand the nature of energy dissipation and the relationship between motion, eddy currents, and damping forces. The calculation of eddy currents generally requires the use of complex numerical procedures. However, for systems with simple geometry, such as a cantilever beam, a recent numerical procedure based on the finite difference method, known for its simplicity in implementation, has been adapted and expanded to determine eddy currents under motional induction. A numerical application has been developed in which the vibration of a specific beam is characterised by its bending or torsional mode shapes, and the nature of the corresponding dissipative forces is analysed. Results indicate that the eddy currents are an effective means of dissipating energy at lower-order modes. Additionally, the direction of the applied magnetic field can induce coupling between bending and torsional vibrations.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"595 \",\"pages\":\"Article 118787\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24005492\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005492","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Numerical analysis of energy dissipation due to eddy currents in a vibrating beam
Vibration attenuation is a key aspect of mechanical engineering. One method to achieve this is through eddy currents, which can be generated in a vibrating system when a magnetic field is present, creating forces that oppose motion. This study examines a mechanical system consisting of a thin cantilever beam vibrating in a uniform and time-invariant magnetic field under steady-state conditions to understand the nature of energy dissipation and the relationship between motion, eddy currents, and damping forces. The calculation of eddy currents generally requires the use of complex numerical procedures. However, for systems with simple geometry, such as a cantilever beam, a recent numerical procedure based on the finite difference method, known for its simplicity in implementation, has been adapted and expanded to determine eddy currents under motional induction. A numerical application has been developed in which the vibration of a specific beam is characterised by its bending or torsional mode shapes, and the nature of the corresponding dissipative forces is analysed. Results indicate that the eddy currents are an effective means of dissipating energy at lower-order modes. Additionally, the direction of the applied magnetic field can induce coupling between bending and torsional vibrations.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.