在 g-C3N4/BiOCl 催化剂上通过质子还原和氯氧化配对实现光催化乙炔加氢氯化

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhi-Hao Zhao, Huan Wang, Jinjin Li, Xingyue Qiao, Zhenpeng Liu, Zhipeng Ren, Menglei Yuan and Jian Zhang*, 
{"title":"在 g-C3N4/BiOCl 催化剂上通过质子还原和氯氧化配对实现光催化乙炔加氢氯化","authors":"Zhi-Hao Zhao,&nbsp;Huan Wang,&nbsp;Jinjin Li,&nbsp;Xingyue Qiao,&nbsp;Zhenpeng Liu,&nbsp;Zhipeng Ren,&nbsp;Menglei Yuan and Jian Zhang*,&nbsp;","doi":"10.1021/jacs.4c0858710.1021/jacs.4c08587","DOIUrl":null,"url":null,"abstract":"<p >Acetylene hydrochlorination is a vital industrial process for the manufacture of vinyl chloride monomer (VCM). Current thermocatalytic acetylene hydrochlorination requires toxic mercury-based or costly noble metal-based catalysts, high temperatures (≥180 °C) and excessive gaseous HCl. Here, we report a room-temperature photocatalytic acetylene hydrochlorination strategy involving concurrent coupling of electron-driven proton reduction (*H) and hole-driven chloride oxidation (*Cl) on photocatalyst surfaces. Under simulated solar light illumination, the developed noble-metal-free g-C<sub>3</sub>N<sub>4</sub>/BiOCl photocatalysts show a considerably high VCM production rate of 1198.6 μmol g<sup>–1</sup> h<sup>–1</sup> and a high VCM selectivity of 95% in a 0.1 M HCl aqueous solution. Even in chloride-rich natural seawater and acidified natural seawater, the VCM production rates of g-C<sub>3</sub>N<sub>4</sub>/BiOCl photocatalysts are up to 170.3 μmol g<sup>–1</sup> h<sup>–1</sup> with a VCM selectivity of 80.4% and 1247.7 μmol g<sup>–1</sup> h<sup>–1</sup> with a VCM selectivity of 94.7%, respectively. Moreover, with sunlight irradiation and acidified natural seawater, the g-C<sub>3</sub>N<sub>4</sub>/BiOCl photocatalysts in a large-scale photosystem retain outstanding acetylene hydrochlorination performance over 10 days of operation. The radical scavenging, in situ photochemical Fourier transform infrared spectroscopy, theoretical simulations, and control experiments reveal that active *Cl and *H play key roles in photocatalytic acetylene hydrochlorination via a possible reaction pathway of C<sub>2</sub>H<sub>2</sub> → *C<sub>2</sub>H<sub>2</sub> → *C<sub>2</sub>H<sub>2</sub>Cl → *C<sub>2</sub>H<sub>3</sub>Cl → C<sub>2</sub>H<sub>3</sub>Cl. With respect to sustainability and low cost, this photocatalytic acetylene hydrochlorination offers excellent advantages over conventional thermocatalytic hydrochlorination technologies.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 43","pages":"29441–29449 29441–29449"},"PeriodicalIF":15.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Acetylene Hydrochlorination by Pairing Proton Reduction and Chlorine Oxidation over g-C3N4/BiOCl Catalysts\",\"authors\":\"Zhi-Hao Zhao,&nbsp;Huan Wang,&nbsp;Jinjin Li,&nbsp;Xingyue Qiao,&nbsp;Zhenpeng Liu,&nbsp;Zhipeng Ren,&nbsp;Menglei Yuan and Jian Zhang*,&nbsp;\",\"doi\":\"10.1021/jacs.4c0858710.1021/jacs.4c08587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Acetylene hydrochlorination is a vital industrial process for the manufacture of vinyl chloride monomer (VCM). Current thermocatalytic acetylene hydrochlorination requires toxic mercury-based or costly noble metal-based catalysts, high temperatures (≥180 °C) and excessive gaseous HCl. Here, we report a room-temperature photocatalytic acetylene hydrochlorination strategy involving concurrent coupling of electron-driven proton reduction (*H) and hole-driven chloride oxidation (*Cl) on photocatalyst surfaces. Under simulated solar light illumination, the developed noble-metal-free g-C<sub>3</sub>N<sub>4</sub>/BiOCl photocatalysts show a considerably high VCM production rate of 1198.6 μmol g<sup>–1</sup> h<sup>–1</sup> and a high VCM selectivity of 95% in a 0.1 M HCl aqueous solution. Even in chloride-rich natural seawater and acidified natural seawater, the VCM production rates of g-C<sub>3</sub>N<sub>4</sub>/BiOCl photocatalysts are up to 170.3 μmol g<sup>–1</sup> h<sup>–1</sup> with a VCM selectivity of 80.4% and 1247.7 μmol g<sup>–1</sup> h<sup>–1</sup> with a VCM selectivity of 94.7%, respectively. Moreover, with sunlight irradiation and acidified natural seawater, the g-C<sub>3</sub>N<sub>4</sub>/BiOCl photocatalysts in a large-scale photosystem retain outstanding acetylene hydrochlorination performance over 10 days of operation. The radical scavenging, in situ photochemical Fourier transform infrared spectroscopy, theoretical simulations, and control experiments reveal that active *Cl and *H play key roles in photocatalytic acetylene hydrochlorination via a possible reaction pathway of C<sub>2</sub>H<sub>2</sub> → *C<sub>2</sub>H<sub>2</sub> → *C<sub>2</sub>H<sub>2</sub>Cl → *C<sub>2</sub>H<sub>3</sub>Cl → C<sub>2</sub>H<sub>3</sub>Cl. With respect to sustainability and low cost, this photocatalytic acetylene hydrochlorination offers excellent advantages over conventional thermocatalytic hydrochlorination technologies.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 43\",\"pages\":\"29441–29449 29441–29449\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c08587\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c08587","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

乙炔氢氯化法是生产氯乙烯单体(VCM)的重要工业工艺。目前的热催化乙炔氢氯化法需要有毒的汞基或昂贵的贵金属基催化剂、高温(≥180 °C)和过量的气态 HCl。在此,我们报告了一种室温光催化乙炔加氢氯化策略,该策略涉及光催化剂表面电子驱动的质子还原(*H)和空穴驱动的氯氧化(*Cl)的同时耦合。在模拟太阳光照射下,所开发的无惰性金属 g-C3N4/BiOCl 光催化剂在 0.1 M HCl 水溶液中显示出相当高的氯乙烯单体生产率(1198.6 μmol g-1 h-1)和 95% 的氯乙烯单体选择性。即使在富含氯化物的天然海水和酸化的天然海水中,g-C3N4/BiOCl 光催化剂的氯乙烯单体生产率也分别高达 170.3 μmol g-1 h-1 和 1247.7 μmol g-1 h-1,氯乙烯单体选择性分别为 80.4% 和 94.7%。此外,在阳光照射和酸化天然海水的条件下,大规模光系统中的 g-C3N4/BiOCl 光催化剂在 10 天的运行过程中仍能保持出色的乙炔盐酸化性能。自由基清除、原位光化学傅立叶变换红外光谱、理论模拟和对照实验表明,活性 *Cl 和 *H 通过 C2H2 → *C2H2 → *C2H2Cl → *C2H3Cl → C2H3Cl 的可能反应途径在光催化乙炔盐酸化过程中发挥了关键作用。就可持续性和低成本而言,这种光催化乙炔加氢氯化技术与传统的热催化加氢氯化技术相比具有卓越的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photocatalytic Acetylene Hydrochlorination by Pairing Proton Reduction and Chlorine Oxidation over g-C3N4/BiOCl Catalysts

Photocatalytic Acetylene Hydrochlorination by Pairing Proton Reduction and Chlorine Oxidation over g-C3N4/BiOCl Catalysts

Acetylene hydrochlorination is a vital industrial process for the manufacture of vinyl chloride monomer (VCM). Current thermocatalytic acetylene hydrochlorination requires toxic mercury-based or costly noble metal-based catalysts, high temperatures (≥180 °C) and excessive gaseous HCl. Here, we report a room-temperature photocatalytic acetylene hydrochlorination strategy involving concurrent coupling of electron-driven proton reduction (*H) and hole-driven chloride oxidation (*Cl) on photocatalyst surfaces. Under simulated solar light illumination, the developed noble-metal-free g-C3N4/BiOCl photocatalysts show a considerably high VCM production rate of 1198.6 μmol g–1 h–1 and a high VCM selectivity of 95% in a 0.1 M HCl aqueous solution. Even in chloride-rich natural seawater and acidified natural seawater, the VCM production rates of g-C3N4/BiOCl photocatalysts are up to 170.3 μmol g–1 h–1 with a VCM selectivity of 80.4% and 1247.7 μmol g–1 h–1 with a VCM selectivity of 94.7%, respectively. Moreover, with sunlight irradiation and acidified natural seawater, the g-C3N4/BiOCl photocatalysts in a large-scale photosystem retain outstanding acetylene hydrochlorination performance over 10 days of operation. The radical scavenging, in situ photochemical Fourier transform infrared spectroscopy, theoretical simulations, and control experiments reveal that active *Cl and *H play key roles in photocatalytic acetylene hydrochlorination via a possible reaction pathway of C2H2 → *C2H2 → *C2H2Cl → *C2H3Cl → C2H3Cl. With respect to sustainability and low cost, this photocatalytic acetylene hydrochlorination offers excellent advantages over conventional thermocatalytic hydrochlorination technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信