利用半人工胶体 Z-结构合成太阳能燃料

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yongpeng Liu, Ariffin Bin Mohamad Annuar, Santiago Rodríguez-Jiménez, Celine Wing See Yeung, Qian Wang, Ana M. Coito, Rita R. Manuel, Inês A. C. Pereira and Erwin Reisner*, 
{"title":"利用半人工胶体 Z-结构合成太阳能燃料","authors":"Yongpeng Liu,&nbsp;Ariffin Bin Mohamad Annuar,&nbsp;Santiago Rodríguez-Jiménez,&nbsp;Celine Wing See Yeung,&nbsp;Qian Wang,&nbsp;Ana M. Coito,&nbsp;Rita R. Manuel,&nbsp;Inês A. C. Pereira and Erwin Reisner*,&nbsp;","doi":"10.1021/jacs.4c1182710.1021/jacs.4c11827","DOIUrl":null,"url":null,"abstract":"<p >The integration of enzymes with semiconductor light absorbers in semiartificial photosynthetic assemblies offers an emerging strategy for solar fuel production. However, such colloidal biohybrid systems rely currently on sacrificial reagents, and semiconductor–enzyme powder systems that couple fuel production to water oxidation are therefore needed to mimic an overall photosynthetic reaction. Here, we present a Z-scheme colloidal enzyme system that produces fuel with electrons sourced from water. This “closed-cycle” semiartificial approach utilizes particulate SrTiO<sub>3</sub>:La,Rh and BiVO<sub>4</sub>:Mo (light absorbers), hydrogenase or formate dehydrogenase (cocatalyst), and a molecular cobalt complex (a redox mediator). Under simulated solar irradiation, this system continuously generates molecular hydrogen or formate, while co-producing molecular oxygen for 10 h using only sunlight, water, and carbon dioxide as inputs. In-depth analysis using quartz crystal microbalance, photoelectrochemical impedance spectroscopy, transient photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy provides mechanistic understanding and characterization of the semiconductor–enzyme hybrid interface. This study provides a rational platform to assemble functional semiartificial colloidal Z-scheme systems for solar fuel synthesis.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 43","pages":"29865–29876 29865–29876"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c11827","citationCount":"0","resultStr":"{\"title\":\"Solar Fuel Synthesis Using a Semiartificial Colloidal Z-Scheme\",\"authors\":\"Yongpeng Liu,&nbsp;Ariffin Bin Mohamad Annuar,&nbsp;Santiago Rodríguez-Jiménez,&nbsp;Celine Wing See Yeung,&nbsp;Qian Wang,&nbsp;Ana M. Coito,&nbsp;Rita R. Manuel,&nbsp;Inês A. C. Pereira and Erwin Reisner*,&nbsp;\",\"doi\":\"10.1021/jacs.4c1182710.1021/jacs.4c11827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The integration of enzymes with semiconductor light absorbers in semiartificial photosynthetic assemblies offers an emerging strategy for solar fuel production. However, such colloidal biohybrid systems rely currently on sacrificial reagents, and semiconductor–enzyme powder systems that couple fuel production to water oxidation are therefore needed to mimic an overall photosynthetic reaction. Here, we present a Z-scheme colloidal enzyme system that produces fuel with electrons sourced from water. This “closed-cycle” semiartificial approach utilizes particulate SrTiO<sub>3</sub>:La,Rh and BiVO<sub>4</sub>:Mo (light absorbers), hydrogenase or formate dehydrogenase (cocatalyst), and a molecular cobalt complex (a redox mediator). Under simulated solar irradiation, this system continuously generates molecular hydrogen or formate, while co-producing molecular oxygen for 10 h using only sunlight, water, and carbon dioxide as inputs. In-depth analysis using quartz crystal microbalance, photoelectrochemical impedance spectroscopy, transient photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy provides mechanistic understanding and characterization of the semiconductor–enzyme hybrid interface. This study provides a rational platform to assemble functional semiartificial colloidal Z-scheme systems for solar fuel synthesis.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 43\",\"pages\":\"29865–29876 29865–29876\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c11827\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c11827\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c11827","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将酶与半导体光吸收剂集成到半人工光合作用组件中,为太阳能燃料生产提供了一种新兴战略。然而,这种胶体生物混合系统目前依赖于牺牲试剂,因此需要将燃料生产与水氧化结合起来的半导体酶粉系统来模拟整体光合反应。在这里,我们介绍一种 Z 型胶体酶系统,它能利用来自水的电子产生燃料。这种 "封闭循环 "半人工方法利用了微粒 SrTiO3:La,Rh 和 BiVO4:Mo(光吸收剂)、氢化酶或甲酸脱氢酶(协同催化剂)以及分子钴复合物(氧化还原调解剂)。在模拟太阳辐照下,该系统仅使用太阳光、水和二氧化碳作为输入,连续 10 小时生成分子氢或甲酸盐,同时共同生成分子氧。利用石英晶体微天平、光电化学阻抗光谱、瞬态光电流光谱和强度调制光电压光谱进行的深入分析,为半导体-酶混合界面的机理理解和特征描述提供了依据。这项研究为组装用于太阳能燃料合成的功能性半人工胶体 Z-方案系统提供了一个合理的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solar Fuel Synthesis Using a Semiartificial Colloidal Z-Scheme

The integration of enzymes with semiconductor light absorbers in semiartificial photosynthetic assemblies offers an emerging strategy for solar fuel production. However, such colloidal biohybrid systems rely currently on sacrificial reagents, and semiconductor–enzyme powder systems that couple fuel production to water oxidation are therefore needed to mimic an overall photosynthetic reaction. Here, we present a Z-scheme colloidal enzyme system that produces fuel with electrons sourced from water. This “closed-cycle” semiartificial approach utilizes particulate SrTiO3:La,Rh and BiVO4:Mo (light absorbers), hydrogenase or formate dehydrogenase (cocatalyst), and a molecular cobalt complex (a redox mediator). Under simulated solar irradiation, this system continuously generates molecular hydrogen or formate, while co-producing molecular oxygen for 10 h using only sunlight, water, and carbon dioxide as inputs. In-depth analysis using quartz crystal microbalance, photoelectrochemical impedance spectroscopy, transient photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy provides mechanistic understanding and characterization of the semiconductor–enzyme hybrid interface. This study provides a rational platform to assemble functional semiartificial colloidal Z-scheme systems for solar fuel synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信