Anurag Dwivedi, A. J. Rasmusson, Philip Richerme and Srinivasan S. Iyengar*,
{"title":"离子阱量子计算系统分布式集上的量子核动力学","authors":"Anurag Dwivedi, A. J. Rasmusson, Philip Richerme and Srinivasan S. Iyengar*, ","doi":"10.1021/jacs.4c0767010.1021/jacs.4c07670","DOIUrl":null,"url":null,"abstract":"<p >Quantum nuclear dynamics with wavepacket time evolution is classically intractable and viewed as a promising avenue for quantum information processing. Here, we use IonQ, Inc.’s 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton within a short-strong hydrogen-bonded system. We also provide the first application of distributed quantum computing for chemical dynamics problems, where a distributed set of quantum processes is constructed using a tensor network formalism. For a range of initial states, we experimentally drive the ion-trap system to emulate the quantum nuclear wavepacket as it evolves along the potential surface generated from the electronic structure. Following the experimental creation of the nuclear wavepacket, we extract measurement observables such as its time-dependent spatial projection and its characteristic vibrational frequencies to good agreement with classical results. Vibrational eigenenergies obtained from quantum computation are in agreement with those obtained from classical simulations to within a fraction of a kilocalorie per mole, thus suggesting chemical accuracy. Our approach opens a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules and also provides the first demonstration of parallel quantum computation on a distributed set of ion-trap quantum computers.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 43","pages":"29355–29363 29355–29363"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Nuclear Dynamics on a Distributed Set of Ion-Trap Quantum Computing Systems\",\"authors\":\"Anurag Dwivedi, A. J. Rasmusson, Philip Richerme and Srinivasan S. Iyengar*, \",\"doi\":\"10.1021/jacs.4c0767010.1021/jacs.4c07670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Quantum nuclear dynamics with wavepacket time evolution is classically intractable and viewed as a promising avenue for quantum information processing. Here, we use IonQ, Inc.’s 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton within a short-strong hydrogen-bonded system. We also provide the first application of distributed quantum computing for chemical dynamics problems, where a distributed set of quantum processes is constructed using a tensor network formalism. For a range of initial states, we experimentally drive the ion-trap system to emulate the quantum nuclear wavepacket as it evolves along the potential surface generated from the electronic structure. Following the experimental creation of the nuclear wavepacket, we extract measurement observables such as its time-dependent spatial projection and its characteristic vibrational frequencies to good agreement with classical results. Vibrational eigenenergies obtained from quantum computation are in agreement with those obtained from classical simulations to within a fraction of a kilocalorie per mole, thus suggesting chemical accuracy. Our approach opens a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules and also provides the first demonstration of parallel quantum computation on a distributed set of ion-trap quantum computers.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 43\",\"pages\":\"29355–29363 29355–29363\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c07670\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c07670","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum Nuclear Dynamics on a Distributed Set of Ion-Trap Quantum Computing Systems
Quantum nuclear dynamics with wavepacket time evolution is classically intractable and viewed as a promising avenue for quantum information processing. Here, we use IonQ, Inc.’s 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton within a short-strong hydrogen-bonded system. We also provide the first application of distributed quantum computing for chemical dynamics problems, where a distributed set of quantum processes is constructed using a tensor network formalism. For a range of initial states, we experimentally drive the ion-trap system to emulate the quantum nuclear wavepacket as it evolves along the potential surface generated from the electronic structure. Following the experimental creation of the nuclear wavepacket, we extract measurement observables such as its time-dependent spatial projection and its characteristic vibrational frequencies to good agreement with classical results. Vibrational eigenenergies obtained from quantum computation are in agreement with those obtained from classical simulations to within a fraction of a kilocalorie per mole, thus suggesting chemical accuracy. Our approach opens a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules and also provides the first demonstration of parallel quantum computation on a distributed set of ion-trap quantum computers.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.