Qi Zhu , Wulin Shan , Xiaoyu Li , Yao Chen , Xu Huang , Bairong Xia , Liting Qian
{"title":"揭示 UCEC 的生物功能:预后特征模型的启示。","authors":"Qi Zhu , Wulin Shan , Xiaoyu Li , Yao Chen , Xu Huang , Bairong Xia , Liting Qian","doi":"10.1016/j.compbiolchem.2024.108219","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecological tumor with a bleak prognosis. Anomalous glycosylation plays a pivotal role in tumorigenesis. Currently, there is a lack of prognostic signatures based on glycosylation-related genes for UCEC. Thus, our research aims to construct a predictive model and validate the correlation between relevant genes and biological functions.</div></div><div><h3>Methods</h3><div>Using the TCGA database, we developed prognostic models and explored their relationships with survival outcomes. We further selected key genes to verify their expression in tissues and assess their impact on cellular behavior.</div></div><div><h3>Results</h3><div>The clinical prognosis of the high-risk group was significantly worse than that of the low-risk group. The nomogram model accurately predicted UCEC patient prognosis. Additionally, we identified OLFML1 as a unique signature gene that can inhibit UCEC progression and reduce radiation resistance in vitro.</div></div><div><h3>Conclusions</h3><div>Our model, which is based on glycosylation-related genes in UCEC, effectively identifies high-risk patients and provides valuable prognostic information. In addition, OLFML1 acts as a tumor suppressor in UCEC and enhances radiosensitivity, suggesting a new potential target for improving therapeutic efficacy.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108219"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the biological functions of UCEC: Insights from a prognostic signature model\",\"authors\":\"Qi Zhu , Wulin Shan , Xiaoyu Li , Yao Chen , Xu Huang , Bairong Xia , Liting Qian\",\"doi\":\"10.1016/j.compbiolchem.2024.108219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecological tumor with a bleak prognosis. Anomalous glycosylation plays a pivotal role in tumorigenesis. Currently, there is a lack of prognostic signatures based on glycosylation-related genes for UCEC. Thus, our research aims to construct a predictive model and validate the correlation between relevant genes and biological functions.</div></div><div><h3>Methods</h3><div>Using the TCGA database, we developed prognostic models and explored their relationships with survival outcomes. We further selected key genes to verify their expression in tissues and assess their impact on cellular behavior.</div></div><div><h3>Results</h3><div>The clinical prognosis of the high-risk group was significantly worse than that of the low-risk group. The nomogram model accurately predicted UCEC patient prognosis. Additionally, we identified OLFML1 as a unique signature gene that can inhibit UCEC progression and reduce radiation resistance in vitro.</div></div><div><h3>Conclusions</h3><div>Our model, which is based on glycosylation-related genes in UCEC, effectively identifies high-risk patients and provides valuable prognostic information. In addition, OLFML1 acts as a tumor suppressor in UCEC and enhances radiosensitivity, suggesting a new potential target for improving therapeutic efficacy.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"113 \",\"pages\":\"Article 108219\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S147692712400207X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147692712400207X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Unraveling the biological functions of UCEC: Insights from a prognostic signature model
Background
Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecological tumor with a bleak prognosis. Anomalous glycosylation plays a pivotal role in tumorigenesis. Currently, there is a lack of prognostic signatures based on glycosylation-related genes for UCEC. Thus, our research aims to construct a predictive model and validate the correlation between relevant genes and biological functions.
Methods
Using the TCGA database, we developed prognostic models and explored their relationships with survival outcomes. We further selected key genes to verify their expression in tissues and assess their impact on cellular behavior.
Results
The clinical prognosis of the high-risk group was significantly worse than that of the low-risk group. The nomogram model accurately predicted UCEC patient prognosis. Additionally, we identified OLFML1 as a unique signature gene that can inhibit UCEC progression and reduce radiation resistance in vitro.
Conclusions
Our model, which is based on glycosylation-related genes in UCEC, effectively identifies high-risk patients and provides valuable prognostic information. In addition, OLFML1 acts as a tumor suppressor in UCEC and enhances radiosensitivity, suggesting a new potential target for improving therapeutic efficacy.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.