Ethan E Abbott, Donald Apakama, Lynne D Richardson, Lili Chan, Girish N Nadkarni
{"title":"利用人工智能和数据科学将健康的社会决定因素纳入急诊医学:范围审查。","authors":"Ethan E Abbott, Donald Apakama, Lynne D Richardson, Lili Chan, Girish N Nadkarni","doi":"10.2196/57124","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Social determinants of health (SDOH) are critical drivers of health disparities and patient outcomes. However, accessing and collecting patient-level SDOH data can be operationally challenging in the emergency department (ED) clinical setting, requiring innovative approaches.</p><p><strong>Objective: </strong>This scoping review examines the potential of AI and data science for modeling, extraction, and incorporation of SDOH data specifically within EDs, further identifying areas for advancement and investigation.</p><p><strong>Methods: </strong>We conducted a standardized search for studies published between 2015 and 2022, across Medline (Ovid), Embase (Ovid), CINAHL, Web of Science, and ERIC databases. We focused on identifying studies using AI or data science related to SDOH within emergency care contexts or conditions. Two specialized reviewers in emergency medicine (EM) and clinical informatics independently assessed each article, resolving discrepancies through iterative reviews and discussion. We then extracted data covering study details, methodologies, patient demographics, care settings, and principal outcomes.</p><p><strong>Results: </strong>Of the 1047 studies screened, 26 met the inclusion criteria. Notably, 9 out of 26 (35%) studies were solely concentrated on ED patients. Conditions studied spanned broad EM complaints and included sepsis, acute myocardial infarction, and asthma. The majority of studies (n=16) explored multiple SDOH domains, with homelessness/housing insecurity and neighborhood/built environment predominating. Machine learning (ML) techniques were used in 23 of 26 studies, with natural language processing (NLP) being the most commonly used approach (n=11). Rule-based NLP (n=5), deep learning (n=2), and pattern matching (n=4) were the most commonly used NLP techniques. NLP models in the reviewed studies displayed significant predictive performance with outcomes, with F1-scores ranging between 0.40 and 0.75 and specificities nearing 95.9%.</p><p><strong>Conclusions: </strong>Although in its infancy, the convergence of AI and data science techniques, especially ML and NLP, with SDOH in EM offers transformative possibilities for better usage and integration of social data into clinical care and research. With a significant focus on the ED and notable NLP model performance, there is an imperative to standardize SDOH data collection, refine algorithms for diverse patient groups, and champion interdisciplinary synergies. These efforts aim to harness SDOH data optimally, enhancing patient care and mitigating health disparities. Our research underscores the vital need for continued investigation in this domain.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e57124"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging Artificial Intelligence and Data Science for Integration of Social Determinants of Health in Emergency Medicine: Scoping Review.\",\"authors\":\"Ethan E Abbott, Donald Apakama, Lynne D Richardson, Lili Chan, Girish N Nadkarni\",\"doi\":\"10.2196/57124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Social determinants of health (SDOH) are critical drivers of health disparities and patient outcomes. However, accessing and collecting patient-level SDOH data can be operationally challenging in the emergency department (ED) clinical setting, requiring innovative approaches.</p><p><strong>Objective: </strong>This scoping review examines the potential of AI and data science for modeling, extraction, and incorporation of SDOH data specifically within EDs, further identifying areas for advancement and investigation.</p><p><strong>Methods: </strong>We conducted a standardized search for studies published between 2015 and 2022, across Medline (Ovid), Embase (Ovid), CINAHL, Web of Science, and ERIC databases. We focused on identifying studies using AI or data science related to SDOH within emergency care contexts or conditions. Two specialized reviewers in emergency medicine (EM) and clinical informatics independently assessed each article, resolving discrepancies through iterative reviews and discussion. We then extracted data covering study details, methodologies, patient demographics, care settings, and principal outcomes.</p><p><strong>Results: </strong>Of the 1047 studies screened, 26 met the inclusion criteria. Notably, 9 out of 26 (35%) studies were solely concentrated on ED patients. Conditions studied spanned broad EM complaints and included sepsis, acute myocardial infarction, and asthma. The majority of studies (n=16) explored multiple SDOH domains, with homelessness/housing insecurity and neighborhood/built environment predominating. Machine learning (ML) techniques were used in 23 of 26 studies, with natural language processing (NLP) being the most commonly used approach (n=11). Rule-based NLP (n=5), deep learning (n=2), and pattern matching (n=4) were the most commonly used NLP techniques. NLP models in the reviewed studies displayed significant predictive performance with outcomes, with F1-scores ranging between 0.40 and 0.75 and specificities nearing 95.9%.</p><p><strong>Conclusions: </strong>Although in its infancy, the convergence of AI and data science techniques, especially ML and NLP, with SDOH in EM offers transformative possibilities for better usage and integration of social data into clinical care and research. With a significant focus on the ED and notable NLP model performance, there is an imperative to standardize SDOH data collection, refine algorithms for diverse patient groups, and champion interdisciplinary synergies. These efforts aim to harness SDOH data optimally, enhancing patient care and mitigating health disparities. Our research underscores the vital need for continued investigation in this domain.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"12 \",\"pages\":\"e57124\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/57124\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/57124","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Leveraging Artificial Intelligence and Data Science for Integration of Social Determinants of Health in Emergency Medicine: Scoping Review.
Background: Social determinants of health (SDOH) are critical drivers of health disparities and patient outcomes. However, accessing and collecting patient-level SDOH data can be operationally challenging in the emergency department (ED) clinical setting, requiring innovative approaches.
Objective: This scoping review examines the potential of AI and data science for modeling, extraction, and incorporation of SDOH data specifically within EDs, further identifying areas for advancement and investigation.
Methods: We conducted a standardized search for studies published between 2015 and 2022, across Medline (Ovid), Embase (Ovid), CINAHL, Web of Science, and ERIC databases. We focused on identifying studies using AI or data science related to SDOH within emergency care contexts or conditions. Two specialized reviewers in emergency medicine (EM) and clinical informatics independently assessed each article, resolving discrepancies through iterative reviews and discussion. We then extracted data covering study details, methodologies, patient demographics, care settings, and principal outcomes.
Results: Of the 1047 studies screened, 26 met the inclusion criteria. Notably, 9 out of 26 (35%) studies were solely concentrated on ED patients. Conditions studied spanned broad EM complaints and included sepsis, acute myocardial infarction, and asthma. The majority of studies (n=16) explored multiple SDOH domains, with homelessness/housing insecurity and neighborhood/built environment predominating. Machine learning (ML) techniques were used in 23 of 26 studies, with natural language processing (NLP) being the most commonly used approach (n=11). Rule-based NLP (n=5), deep learning (n=2), and pattern matching (n=4) were the most commonly used NLP techniques. NLP models in the reviewed studies displayed significant predictive performance with outcomes, with F1-scores ranging between 0.40 and 0.75 and specificities nearing 95.9%.
Conclusions: Although in its infancy, the convergence of AI and data science techniques, especially ML and NLP, with SDOH in EM offers transformative possibilities for better usage and integration of social data into clinical care and research. With a significant focus on the ED and notable NLP model performance, there is an imperative to standardize SDOH data collection, refine algorithms for diverse patient groups, and champion interdisciplinary synergies. These efforts aim to harness SDOH data optimally, enhancing patient care and mitigating health disparities. Our research underscores the vital need for continued investigation in this domain.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.