相位响应曲线和坐标的作用。

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Simon Wilshin, Matthew D Kvalheim, Shai Revzen
{"title":"相位响应曲线和坐标的作用。","authors":"Simon Wilshin, Matthew D Kvalheim, Shai Revzen","doi":"10.1007/s00422-024-00997-w","DOIUrl":null,"url":null,"abstract":"<p><p>The \"infinitesimal phase response curve\" (PRC) is a common tool used to analyze phase resetting in the natural sciences in general and neuroscience in particular. We make the observation that the PRC with respect to a coordinate v actually depends on the choice of other coordinates. As a consequence, a complete delay embedding reconstruction of the dynamics using v which would allow phase to be computed still does not allow the v PRC to be computed. We give a coordinate-free definition of the PRC making this observation obvious. This leads to an experimental protocol: first collect an appropriate ensemble of measurements by intermittently controlling neuron voltage. Then, for any suitable current carrier dynamic postulated, we show how the ensemble can be used to compute the voltage PRC with that current carrier. The approach extends to many oscillators measured and controlled through a subset of their coordinates.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase response curves and the role of coordinates.\",\"authors\":\"Simon Wilshin, Matthew D Kvalheim, Shai Revzen\",\"doi\":\"10.1007/s00422-024-00997-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The \\\"infinitesimal phase response curve\\\" (PRC) is a common tool used to analyze phase resetting in the natural sciences in general and neuroscience in particular. We make the observation that the PRC with respect to a coordinate v actually depends on the choice of other coordinates. As a consequence, a complete delay embedding reconstruction of the dynamics using v which would allow phase to be computed still does not allow the v PRC to be computed. We give a coordinate-free definition of the PRC making this observation obvious. This leads to an experimental protocol: first collect an appropriate ensemble of measurements by intermittently controlling neuron voltage. Then, for any suitable current carrier dynamic postulated, we show how the ensemble can be used to compute the voltage PRC with that current carrier. The approach extends to many oscillators measured and controlled through a subset of their coordinates.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-024-00997-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-024-00997-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

无穷小相位响应曲线"(PRC)是自然科学,尤其是神经科学分析相位重置的常用工具。我们发现,相对于坐标 v 的 PRC 实际上取决于其他坐标的选择。因此,使用 v 对动力学进行完整的延迟嵌入重构可以计算相位,但仍然无法计算 v PRC。我们给出了 PRC 的无坐标定义,使这一观察结果显而易见。这就引出了一个实验方案:首先通过间歇控制神经元电压来收集适当的测量集合。然后,对于任何合适的电流载流子动态假设,我们展示了如何利用该集合来计算该电流载流子的电压 PRC。这种方法适用于通过坐标子集测量和控制的许多振荡器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase response curves and the role of coordinates.

The "infinitesimal phase response curve" (PRC) is a common tool used to analyze phase resetting in the natural sciences in general and neuroscience in particular. We make the observation that the PRC with respect to a coordinate v actually depends on the choice of other coordinates. As a consequence, a complete delay embedding reconstruction of the dynamics using v which would allow phase to be computed still does not allow the v PRC to be computed. We give a coordinate-free definition of the PRC making this observation obvious. This leads to an experimental protocol: first collect an appropriate ensemble of measurements by intermittently controlling neuron voltage. Then, for any suitable current carrier dynamic postulated, we show how the ensemble can be used to compute the voltage PRC with that current carrier. The approach extends to many oscillators measured and controlled through a subset of their coordinates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信