在树状排序或伞状排序下,诊断检测准确度测量和最佳截断点选择程序的不同视角。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa
{"title":"在树状排序或伞状排序下,诊断检测准确度测量和最佳截断点选择程序的不同视角。","authors":"Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa","doi":"10.1080/10543406.2024.2420659","DOIUrl":null,"url":null,"abstract":"<p><p>In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-31"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different view of the diagnostics test accuracy measures and optimal cut-off point selection procedure under tree or umbrella ordering.\",\"authors\":\"Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa\",\"doi\":\"10.1080/10543406.2024.2420659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-31\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2420659\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2420659","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在医学诊断检测领域,诊断检测既可以采用二元形式,区分患病和未患病状态,也可以采用序数形式,将未患病状态分为不同阶段(1 到 K)。多类情况下的另一种重要分类方法是树状排序或伞状排序,即在一个生物标记中包含多个无序的子类(亚型)。在树状排序或伞状排序中,分类器会评估一个类别的标记物测量值是否超过或低于其他类别的标记物测量值。虽然受体工作特征曲线(ROC)和摘要测量已被调整以适应树状排序和伞状排序,但这些方法产生的临界点往往会对某些疾病亚型产生高灵敏度的检测,而对其他疾病亚型的特异性则大打折扣。这可能不是所有疾病的理想选择。因此,在这项研究中,我们探讨了诊断测试准确性的各种测量方法,以及树状排序或伞状排序下的最佳截断点选择程序,以促进更有针对性的测试。我们介绍了数值示例和模拟研究,并使用肺癌的真实数据演示了这一方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Different view of the diagnostics test accuracy measures and optimal cut-off point selection procedure under tree or umbrella ordering.

In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信