Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa
{"title":"在树状排序或伞状排序下,诊断检测准确度测量和最佳截断点选择程序的不同视角。","authors":"Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa","doi":"10.1080/10543406.2024.2420659","DOIUrl":null,"url":null,"abstract":"<p><p>In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-31"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different view of the diagnostics test accuracy measures and optimal cut-off point selection procedure under tree or umbrella ordering.\",\"authors\":\"Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa\",\"doi\":\"10.1080/10543406.2024.2420659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-31\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2420659\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2420659","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Different view of the diagnostics test accuracy measures and optimal cut-off point selection procedure under tree or umbrella ordering.
In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.