{"title":"绵羊卵巢中 RNA 编辑位点的解析和功能分析以及与产仔数的关系","authors":"","doi":"10.1016/j.animal.2024.101342","DOIUrl":null,"url":null,"abstract":"<div><div>Sheep litter size is a critical trait in mutton production. While litter size regulation in relation to DNA transcription have been rigorously investigated, the function of RNA editing remains less explored. To elucidate the mechanisms controlling sheep fecundity at the RNA editing level and identify pivotal RNA editing sites, this study scrutinised RNA editing sites (<strong>RESs</strong>) in follicular and luteal phases of ovaries from sheep with high and low fecundity, and the functions of population-specific RESs were subsequently analysed. A total of 2 182 475 RESs, 74.61% of which were A-to-I and C-to-U sites, were identified. These RESs were fairly evenly dispersed over the chromosomes, with 46.8% showing close clustering (inter-site distance < 300 bp). Notably, 93% were primarily situated in intronic and intergenic regions. In the follicular phase, pivotal RESs were found in the introns of genes including LPS responsive beige-like anchor, MCC regulator of Wnt signalling, and RWD domain containing 3, among others, and in the exon region of EvC ciliary complex subunit 2. In the luteal phase, RESs were observed in the introns of genes such as H/ACA ribonucleoprotein assembly factor and SDA1 domain-containing 1, and the exon and 3′UTR regions of polypeptide N-acetylgalactosaminyltransferase 15 and ilvB acetolactate synthase-like, respectively. High-fecundity sheep showed RESs in the follicular phase in genes such as fibrillin 1, cyclin−dependent kinase 6, and roundabout 1, and in genes such as autophagy−related 2B and versican in the luteal phase. Thirteen RESs specific to the follicular phase and eight specific to the luteal phase were identified in high-fecundity sheep ovaries. These RESs offer promising molecular targets and enhance understanding of multiple births in sheep from the perspective of posttranscriptional alterations.</div></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolving and functional analysis of RNA editing sites in sheep ovaries and associations with litter size\",\"authors\":\"\",\"doi\":\"10.1016/j.animal.2024.101342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sheep litter size is a critical trait in mutton production. While litter size regulation in relation to DNA transcription have been rigorously investigated, the function of RNA editing remains less explored. To elucidate the mechanisms controlling sheep fecundity at the RNA editing level and identify pivotal RNA editing sites, this study scrutinised RNA editing sites (<strong>RESs</strong>) in follicular and luteal phases of ovaries from sheep with high and low fecundity, and the functions of population-specific RESs were subsequently analysed. A total of 2 182 475 RESs, 74.61% of which were A-to-I and C-to-U sites, were identified. These RESs were fairly evenly dispersed over the chromosomes, with 46.8% showing close clustering (inter-site distance < 300 bp). Notably, 93% were primarily situated in intronic and intergenic regions. In the follicular phase, pivotal RESs were found in the introns of genes including LPS responsive beige-like anchor, MCC regulator of Wnt signalling, and RWD domain containing 3, among others, and in the exon region of EvC ciliary complex subunit 2. In the luteal phase, RESs were observed in the introns of genes such as H/ACA ribonucleoprotein assembly factor and SDA1 domain-containing 1, and the exon and 3′UTR regions of polypeptide N-acetylgalactosaminyltransferase 15 and ilvB acetolactate synthase-like, respectively. High-fecundity sheep showed RESs in the follicular phase in genes such as fibrillin 1, cyclin−dependent kinase 6, and roundabout 1, and in genes such as autophagy−related 2B and versican in the luteal phase. Thirteen RESs specific to the follicular phase and eight specific to the luteal phase were identified in high-fecundity sheep ovaries. These RESs offer promising molecular targets and enhance understanding of multiple births in sheep from the perspective of posttranscriptional alterations.</div></div>\",\"PeriodicalId\":50789,\"journal\":{\"name\":\"Animal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751731124002799\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751731124002799","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Resolving and functional analysis of RNA editing sites in sheep ovaries and associations with litter size
Sheep litter size is a critical trait in mutton production. While litter size regulation in relation to DNA transcription have been rigorously investigated, the function of RNA editing remains less explored. To elucidate the mechanisms controlling sheep fecundity at the RNA editing level and identify pivotal RNA editing sites, this study scrutinised RNA editing sites (RESs) in follicular and luteal phases of ovaries from sheep with high and low fecundity, and the functions of population-specific RESs were subsequently analysed. A total of 2 182 475 RESs, 74.61% of which were A-to-I and C-to-U sites, were identified. These RESs were fairly evenly dispersed over the chromosomes, with 46.8% showing close clustering (inter-site distance < 300 bp). Notably, 93% were primarily situated in intronic and intergenic regions. In the follicular phase, pivotal RESs were found in the introns of genes including LPS responsive beige-like anchor, MCC regulator of Wnt signalling, and RWD domain containing 3, among others, and in the exon region of EvC ciliary complex subunit 2. In the luteal phase, RESs were observed in the introns of genes such as H/ACA ribonucleoprotein assembly factor and SDA1 domain-containing 1, and the exon and 3′UTR regions of polypeptide N-acetylgalactosaminyltransferase 15 and ilvB acetolactate synthase-like, respectively. High-fecundity sheep showed RESs in the follicular phase in genes such as fibrillin 1, cyclin−dependent kinase 6, and roundabout 1, and in genes such as autophagy−related 2B and versican in the luteal phase. Thirteen RESs specific to the follicular phase and eight specific to the luteal phase were identified in high-fecundity sheep ovaries. These RESs offer promising molecular targets and enhance understanding of multiple births in sheep from the perspective of posttranscriptional alterations.
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.