基于混合二维和三维卷积的可变形剂量预测网络用于鼻咽癌放射治疗

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yanhua Liu, Wang Luo, Xiangchen Li, Min Liu
{"title":"基于混合二维和三维卷积的可变形剂量预测网络用于鼻咽癌放射治疗","authors":"Yanhua Liu, Wang Luo, Xiangchen Li, Min Liu","doi":"10.1007/s11517-024-03231-8","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy is recognized as the primary treatment for nasopharyngeal carcinoma (NPC). Rapid and accurate dose prediction is crucial for enhancing the quality and efficiency of radiotherapy planning. However, the current dose prediction model based on 2D architecture cannot effectively learn the spatial information among slices. Although some studies have explored the incorporation of interslice features through 3D architecture, the resolution properties of medical image anisotropy significantly limit the predictive performance. To address the issues, we propose a novel deformable dose prediction network based on hybrid 2D and 3D convolution for NPC radiotherapy. Specifically, the proposed model innovatively incorporates a 2.5D architecture based on hybrid 2D and 3D convolution, and effectively utilizes the directional information within anisotropic resolutions to achieve cross-scale feature extraction. Additionally, deformable convolution is introduced into the model to enhance the receptive field and effectively handle multi-scale spatial transformations. To improve channel correlation and reduce redundant features, we design a Residual Deformable Squeeze-and-Excitation Module. We conduct extensive experiments on an internal dataset, and the results show that the proposed model outperforms other existing methods in most dosimetric criteria. The proposed model has superior dose prediction performance in NPC radiotherapy, and has important clinical significance for assisting physicists to optimize the treatment plan and improve standardization of radiotherapy planning. The source code is available at https://github.com/CDUTJ102/2.5D-Deformable-UNet .</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformable dose prediction network based on hybrid 2D and 3D convolution for nasopharyngeal carcinoma radiotherapy.\",\"authors\":\"Yanhua Liu, Wang Luo, Xiangchen Li, Min Liu\",\"doi\":\"10.1007/s11517-024-03231-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiotherapy is recognized as the primary treatment for nasopharyngeal carcinoma (NPC). Rapid and accurate dose prediction is crucial for enhancing the quality and efficiency of radiotherapy planning. However, the current dose prediction model based on 2D architecture cannot effectively learn the spatial information among slices. Although some studies have explored the incorporation of interslice features through 3D architecture, the resolution properties of medical image anisotropy significantly limit the predictive performance. To address the issues, we propose a novel deformable dose prediction network based on hybrid 2D and 3D convolution for NPC radiotherapy. Specifically, the proposed model innovatively incorporates a 2.5D architecture based on hybrid 2D and 3D convolution, and effectively utilizes the directional information within anisotropic resolutions to achieve cross-scale feature extraction. Additionally, deformable convolution is introduced into the model to enhance the receptive field and effectively handle multi-scale spatial transformations. To improve channel correlation and reduce redundant features, we design a Residual Deformable Squeeze-and-Excitation Module. We conduct extensive experiments on an internal dataset, and the results show that the proposed model outperforms other existing methods in most dosimetric criteria. The proposed model has superior dose prediction performance in NPC radiotherapy, and has important clinical significance for assisting physicists to optimize the treatment plan and improve standardization of radiotherapy planning. The source code is available at https://github.com/CDUTJ102/2.5D-Deformable-UNet .</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03231-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03231-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

放疗被认为是鼻咽癌(NPC)的主要治疗方法。快速准确的剂量预测对提高放疗计划的质量和效率至关重要。然而,目前基于二维结构的剂量预测模型无法有效学习切片间的空间信息。虽然有研究探索通过三维结构纳入切片间特征,但医学图像各向异性的分辨率特性极大地限制了预测性能。为了解决这些问题,我们提出了一种基于二维和三维混合卷积的新型可变形剂量预测网络,用于鼻咽癌放疗。具体来说,该模型创新性地采用了基于二维和三维混合卷积的 2.5D 架构,并有效利用各向异性分辨率内的方向信息来实现跨尺度特征提取。此外,该模型还引入了可变形卷积,以增强感受野并有效处理多尺度空间变换。为了改善通道相关性并减少冗余特征,我们设计了一个残差可变形挤压激发模块。我们在内部数据集上进行了大量实验,结果表明,在大多数剂量测定标准上,所提出的模型都优于其他现有方法。所提出的模型在鼻咽癌放疗中具有卓越的剂量预测性能,对于协助物理学家优化治疗方案和提高放疗计划的标准化具有重要的临床意义。源代码见 https://github.com/CDUTJ102/2.5D-Deformable-UNet 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformable dose prediction network based on hybrid 2D and 3D convolution for nasopharyngeal carcinoma radiotherapy.

Radiotherapy is recognized as the primary treatment for nasopharyngeal carcinoma (NPC). Rapid and accurate dose prediction is crucial for enhancing the quality and efficiency of radiotherapy planning. However, the current dose prediction model based on 2D architecture cannot effectively learn the spatial information among slices. Although some studies have explored the incorporation of interslice features through 3D architecture, the resolution properties of medical image anisotropy significantly limit the predictive performance. To address the issues, we propose a novel deformable dose prediction network based on hybrid 2D and 3D convolution for NPC radiotherapy. Specifically, the proposed model innovatively incorporates a 2.5D architecture based on hybrid 2D and 3D convolution, and effectively utilizes the directional information within anisotropic resolutions to achieve cross-scale feature extraction. Additionally, deformable convolution is introduced into the model to enhance the receptive field and effectively handle multi-scale spatial transformations. To improve channel correlation and reduce redundant features, we design a Residual Deformable Squeeze-and-Excitation Module. We conduct extensive experiments on an internal dataset, and the results show that the proposed model outperforms other existing methods in most dosimetric criteria. The proposed model has superior dose prediction performance in NPC radiotherapy, and has important clinical significance for assisting physicists to optimize the treatment plan and improve standardization of radiotherapy planning. The source code is available at https://github.com/CDUTJ102/2.5D-Deformable-UNet .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信